• Microelectronics
  • Vol. 52, Issue 1, 71 (2022)
ZHANG Shiran, TANG Meng, DENG Licheng, and WANG Debo
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.210159 Cite this Article
    ZHANG Shiran, TANG Meng, DENG Licheng, WANG Debo. Research Progress of CO and CO2 Gas Sensors Based on Graphene[J]. Microelectronics, 2022, 52(1): 71 Copy Citation Text show less
    References

    [1] TETSURO S, AKIO K, KIYOSHI F, et al. A new detector for gaseous components using semiconductive thin films [J]. Analyt Chem, 1962, 34(11): 1502-1503.

    [2] ONG K G, ZENG K, GRIMES C A. A wireless, passive carbon nanotube-based gas sensor [J]. IEEE Sensors J, 2002, 2(2): 82-88.

    [3] CANTALINI C, VALENTINI L, LOZZI L, et al. NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition [J]. Sensors Actuators B, 2003, 93(1-3): 333-337.

    [4] CHOPRA S, MCGUIRE K, GOTHARD N, et al. Selective gas detection using a carbon nanotube sensor [J]. Appl Phys Lett, 2003, 83(11): 2280-2282.

    [5] WANG S G, ZHANG Q Z, YANG D J, et al. Multi-walled carbon nanotube-based gas sensors for NH3 detection [J]. Diamond Related Mater, 2004, 13(4-8): 1327-1332.

    [6] SUEHIRO J, ZHOU G, IMAKIIRE H, et al. Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement [J]. Sensors Actuators B, 2005, 108(1-2): 398-403.

    [7] GEIM A K. Graphene: status and prospects [J]. Science, 2009, 324(5934): 1530-1534.

    [8] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Mater, 2007, 6(9): 652-655.

    [9] LU G H, OCOLA L E, CHEN J H. Reduced graphene oxide for room-temperature gas sensors [J]. Nanotechnol, 2009, 20(44): 445502.

    [10] DAN Y P, LU Y, KYBERT N J, et al. Intrinsic response of graphene vapor sensors [J]. Nano Lett, 2009, 9(4): 1472-1475.

    [11] TRUNG D, HOA N D, TONG P V, et al. Effective decoration of Pd nanoparticles on the surface of SnO2 nano-wires for enhancement of CO gas-sensing performance [J]. J Hazard Mater, 2014, 265: 124-132.

    [12] TAN C H, TAN S T, LEE H B, et al. Automated room temperature optical absorbance CO sensor based on In-doped ZnO nanorod [J]. Sensors Actuators B: Chem, 2017, 248: 140-152.

    [13] TAKEDA H, UEDA T, KAMADA K, et al. CO-sensing properties of a NASICON-based gas sensor attached with Pt mixed with Bi2O3 as a sensing electrode [J]. Electrochimica Acta, 2015, 155(10): 8-15.

    [14] YANG S L, LEI G, XU H, et al. A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field [J]. Appl Surf Sci, 2019, 480: 205-211.

    [15] QIN Y X, LIU M, YE Z H. A DFT study on WO3 nanowires with different orientations for NO2 sensing application [J]. J Molecular Struct, 2014, 1076: 546-553.

    [16] SALIH E, AYESH A I. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study [J]. Physica E: Low-Dimensional Syst Nanostruct, 2021, 125: 114418.

    [17] ZHENG Z Q, WANG H L. Different elements doped graphene sensor for CO2 greenhouse gases detection: the DFT study [J]. Chem Phys Lett, 2019, 721: 33-37.

    [18] AMARNATH M, GURUNATHAN K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature [J]. J Alloys Compounds, 2021, 857: 157584.

    ZHANG Shiran, TANG Meng, DENG Licheng, WANG Debo. Research Progress of CO and CO2 Gas Sensors Based on Graphene[J]. Microelectronics, 2022, 52(1): 71
    Download Citation