• Journal of the European Optical Society-Rapid Publications
  • Vol. 18, Issue 2, 2022012 (2022)
Jyrki Laatikainen1、*, Ari T. Friberg1, Olga Korotkova2, and Tero Setälä1
Author Affiliations
  • 1Institute of Photonics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
  • 2Department of Physics, University of Miami, Coral Gables, FL 33146, USA
  • show less
    DOI: 10.1051/jeos/2022012 Cite this Article
    Jyrki Laatikainen, Ari T. Friberg, Olga Korotkova, Tero Setälä. Singular value representation of the coherence Poincaré sphere[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022012 Copy Citation Text show less
    References

    [1] L. Mandel, E. Wolf. Optical coherence and quantum optics(1995).

    [2] O. Korotkova. Random light beams: theory and applications(2014).

    [3] A.T. Friberg, T. Setälä. Electromagnetic theory of optical coherence [Invited]. J. Opt. Soc. Am. A, 33, 2431(2016).

    [4] J. Laatikainen, A.T. Friberg, O. Korotkova, T. Setälä. Poincaré sphere of electromagnetic spatial coherence. Opt. Lett., 46, 2143(2021).

    [5] J. Laatikainen, A.T. Friberg, O. Korotkova, T. Setälä. Coherence Poincaré sphere of partially polarized optical beams. Phys. Rev. A, 105, 033506(2022).

    [6] C. Brosseau. Fundamentals of polarized light: a statistical optics approach(1998).

    [7] J.J. Gil, R. Ossikovski. Polarized light and the Mueller matrix approach(2016).

    [8] A. Nielsen, I.L. Chuang. Quantum computation and quantum information(2010).

    [9] A.M. Beckley, T.G. Brown, M.A. Alonso. Full Poincaré beams. Opt. Express, 18, 10777(2010).

    [10] M.J. Padgett, J. Courtial. Poincaré sphere equivalent for light beams containing orbital angular momentum. Opt. Lett., 24, 439(1999).

    [11] G. Milione, H.I. Sztul, D.A. Nolan, R.R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [12] X. Zang, G. Bautista, L. Turquet, T. Setälä, M. Kauranen, J. Turunen. Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams. J. Opt. Soc. Am. B., 38, 521(2021).

    [13] Z.C. Ren, L.J. Kong, S.M. Li, S.X. Qian, Y. Li, C. Tu, H.T. Wang. Generalized Poincaré sphere. Opt. Express, 23, 26586(2015).

    [14] A. Halder, A. Norrman, A.T. Friberg. Poincaré sphere representation of scalar two-beam interference under spatial unitary transformations. Opt. Lett., 46, 5619(2021).

    [15] M. Luo, J. Laatikainen, A.T. Friberg, O. Korotkova, T. Setälä. Singular-value decomposition and electromagnetic coherence of optical beams. Opt. Lett., 47, 5337(2022).

    [16] J. Tervo, T. Setälä, A.T. Friberg. Theory of partially coherent electromagnetic fields in the space–frequency domain. J. Opt. Soc. Am. A, 21, 2205(2004).

    [17] J. Tervo, T. Setälä, A.T. Friberg. Degree of coherence for electromagnetic fields. Opt. Express, 11, 1137(2003).

    [18] F. Gori, J. Tervo, J. Turunen. Correlation matrices of completely unpolarized beams. Opt. Lett., 34, 1447(2009).

    Jyrki Laatikainen, Ari T. Friberg, Olga Korotkova, Tero Setälä. Singular value representation of the coherence Poincaré sphere[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022012
    Download Citation