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Abstract. The so-called coherence Poincaré sphere was recently introduced for geometrical visualization of
the state of two-point spatial coherence of a random electromagnetic beam. The formalism and its interpreta-
tion strongly utilized a specific decomposition of the Gram matrix of the cross-spectral density (CSD) matrix.
In this work, we show that the interpretation of the coherence Poincaré sphere is obtained exclusively and
straightforwardly via the singular value decomposition of the CSD matrix.
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1 Introduction

Optical coherence theory deals with the analysis and conse-
quences of randomness in optical fields which gives rise to
partial (spatial and temporal) coherence of light [1, 2].
A topic of substantial interest in the last two decades has
been the coherence properties of vectorial light [3], and
among the very recent results is the geometrical repre-
sentation called the coherence Poincaré sphere [4, 5]. This
formalism displays the spatial coherence of a random elec-
tromagnetic beam similarly as the traditional Poincaré
sphere [6, 7] depicts the beam’s polarization characteristics,
and it is the first graphical representation of electromag-
netic two-point coherence. Illustrative geometrical interpre-
tations of this kind are often found to be extremely useful in
physics as evidenced by the conventional Poincaré sphere in
polarization optics and the Bloch sphere in quantum
mechanics [8]. In optics, the Poincaré sphere and its vari-
ants have found important applications, e.g., in the context
of full Poincaré beams [9], orbital angular momentum [10],
higher-order polarization states [11, 12], vector fields [13],
and scalar two-beam interference [14].

In the previous works [4, 5], the derivation and interpre-
tation of the coherence Poincaré sphere was based on
decomposing the Gram matrix of the cross-spectral density
(CSD) into two parts in full analogy to the division of the
polarization matrix [1] into parts corresponding to a com-
pletely unpolarized and fully polarized beams. The present
work complements and extends these earlier studies by
employing the singular value decomposition (SVD) of the
CSD matrix, which was utilized in [5] and more extensively

studied in [15]. More precisely, we derive the formalism of
the coherence Poincaré sphere using the SVD exclusively,
and show that this approach leads to a physical interpreta-
tion for the sphere as a geometric representation of the
intertwined coherence and polarization information con-
veyed by the singular values and vectors of the CSD matrix.

2 Discussion

Consider a random, polychromatic, and statistically sta-
tionary electromagnetic beam field. The spatial coherence
properties of the field at two positions r1 and r2 on a
transversal plane with respect to the propagation direction
are described in the space-frequency domain by the CSD
matrix [1, 2, 6, 16]

W r1; r2;xð Þ ¼ hE�ðr1;xÞETðr2;xÞi; ð1Þ
taken as an average over an ensemble of monochromatic
(transverse, two component) electric field realizations E
(r, x) at angular frequency x. The angle brackets, aster-
isk, and superscript T stand for the ensemble average,
complex conjugate, and matrix transpose, respectively.
The SVD of the CSD matrix is written as [5–7]

W12 ¼ UDVy; ð2Þ
where the dagger denotes Hermitian conjugation and
W12 = Wðr1; r2; xÞ. From now on we do not explicitly
show the frequency dependence of various quantities.
In equation (2), U ¼ ½ûþ; û�� and V ¼ ½v̂þ; v̂�� are
unitary matrices, and D = diag[m+,m�], with m+ and m�
representing the singular values of the CSD. The complex* Corresponding author: jyrki.laatikainen@uef.fi
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unit vectors û� and v̂� in the columns of U and V are the
left and right singular vectors of the CSD matrix obeying

W12v̂� ¼ m�û�; ð3Þ

Wy
12û� ¼ m�v̂�: ð4Þ

The singular values are real and satisfy mþ � m� � 0.
Furthermore, their squares coincide with the eigenvalues
of the Gram matrices of the CSD and its Hermitian adjoint
given, respectively, by [4, 5]

X12 ¼ Wy
12W12; ð5Þ

X21 ¼ W12W
y
12; ð6Þ

where X12 = Xðr1; r2; xÞ, X21 = Xðr2; r1; xÞ, and we
employed the quasi-Hermiticity property Wy

12 ¼ W21. We
note that the Gram matrices contain second-order coher-
ence information only. The vectors v̂� and û� fulfil the
eigenvalue equations

X12v̂� ¼ m2�v̂�; ð7Þ

X21û� ¼ m2�û�: ð8Þ
Expressions for m2� can therefore be obtained from the
characteristic equation detðX12 � m2�r0Þ ¼ 0, where r0 is
the 2� 2 unit matrix and det denotes the determinant.
The characteristic equation can be written as

m4� � trX12m
2
� þ detX12 ¼ 0; ð9Þ

where tr stands for the trace. The (squared) singular
values are then obtained as

m2� ¼ 1
2
trX12 1� PX r1; r2ð Þ½ �; ð10Þ

where

PXðr1; r2Þ ¼ 1� 4 detX12

tr2X12

� �1=2

ð11Þ

is bounded as 0 � PX (r1, r2) � 1.
Next, we highlight some central properties of X12

and X21. Firstly, they are Hermitian and nonnegative defi-
nite matrices that satisfy the conditions Xy

12 ¼ X12,
Xy

21 ¼ X21, trX12 ¼ trX21, detX12 = detX21 � 0, and con-
tain nonnegative diagonal entries. Secondly, the coherence
information in matrix X12 is generally different from that
in X21 due to the quasi-Hermiticity of the CSD matrix as
is evident from equations (5) and (6). The mathematical
properties of X12 and X21 are similar to those of the polar-
ization matrix and they can formally be decomposed into
two parts, one of which is proportional to the identity
matrix and the other has zero determinant. This division
is analogous to the decomposition of the polarization matrix
into parts corresponding to a completely unpolarized beam
and a fully polarized beam [1]. The earlier works concerning
the coherence Poincaré sphere [4, 5] were extensively based
on this division. Here we follow a different procedure and
interpret the sphere using the SVD of the CSD only.

We proceed by defining the Stokes parameters of X12 as

Qjðr1; r2Þ ¼ trðrjX12Þ; j ¼ 0; . . . ; 3; ð12Þ

where rj, with j 2 (1, 2, 3), are the Pauli spin matrices [1].
We remark that analogous definitions hold naturally for
X21. These parameters are real-valued and contain infor-
mation on the two-point spatial coherence of the beam.
The Stokes parameters can be normalized as

qjðr1; r2Þ ¼
Qjðr1; r2Þ

S0ðr1ÞS0ðr2Þ ; j ¼ 0; . . . ; 3; ð13Þ

with S0(r) = trW(r, r, x) being the spectral density of the
beam. The parameters qj(r1,r2), j = 1, 2, 3, obey the quad-
ratic equation

q21ðr1; r2Þ þ q22ðr1; r2Þ þ q23ðr1; r2Þ ¼ P2
Xðr1; r2Þl4ðr1; r2Þ;

ð14Þ
where

lðr1; r2Þ ¼ trX12

S0ðr1ÞS0ðr2Þ
� �1=2

ð15Þ

is the electromagnetic degree of coherence [3, 17]. This
degree is bounded as 0 � l(r1,r2) � 1, with the lower
and upper bounds corresponding to complete incoherence
and full coherence of the beam at points r1 and r2,
respectively.

Next we approach the geometric interpretation of the
coherence Poincaré sphere in equation (14) via the singular
value decomposition of the CSD. We first define the coher-
ence Poincaré vector

qðr1; r2Þ ¼ q1ðr1; r2Þ; q2ðr1; r2Þ; q3ðr1; r2Þ½ �; ð16Þ
that displays the spatial coherence information in X12 as
points on or within a unit sphere in the (q1, q2, q3) space.
We remark that since the information content of X12 is in
general different from that of X21, two coherence Poincaré
vectors q12 = q(r1,r2) and q21 = q(r2,r1) are required to
display the spatial coherence of the beam. Analytical
expressions of these vectors are obtained from the SVD
of the CSD matrix as is shown below. For this purpose
we recall the unitarity conditions UyU = VyV = r0,
which together with the SVD and equations (5) and (6)
yield

X12 ¼ m2þv̂þv̂y
þ þ m2�v̂�v̂y

�; ð17Þ

X21 ¼ m2þûþûy
þ þ m2�û�ûy

�: ð18Þ
Furthermore, unitarity of U and V implies that
v̂þv̂

y
þ þ v̂�v̂y

� ¼ r0 and similarly for û�. These together
with equations (10), (17), and (18) result in

X12 ¼ trX12
1� PX

2
r0 þ PXv̂þv̂y

þ

� �
; ð19Þ

X21 ¼ trX21
1� PX

2
r0 þ PXûþûy

þ

� �
; ð20Þ
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where we have written PX = PX(r1,r2). It is important to
note that these two expressions coincide with the decom-
positions in equation (3) of [4] and equation (8) of [5]
which constituted the starting point of the mentioned
works without a reference to the SVD. Combining the
equations above with the definitions in equations (12),
(13), (15), and (16), we find that

q12 ¼ PXl
2 vþxj j2 � vþy

�� ��2; 2Reðvþxv�þyÞ; 2Imðvþxv�þyÞ
h i

;

ð21Þ

q21 ¼ PXl
2 uþxj j2 � uþy

�� ��2; 2Reðuþxu�
þyÞ; 2Imðuþxu�

þyÞ
h i

;

ð22Þ
where l = l(r1,r2). These expressions provide the singu-
lar-value interpretation of the two coherence Poincaré
vectors that represent the state of spatial coherence of a
partially coherent and partially polarized electromagnetic
beam. Both vectors have the same length, |q12| =
|q21| = PXl

2, and their directions are specified by the
vectors v̂þ and ûþ. In addition, we note that the equali-
ties trX12 ¼ m2þ þ m2� and detX12 ¼ m2þm

2
� are obtained

from equation (10), and by using them together with
equations (11) and (15) we see that PXl2 ¼
ðm2þ � m2�Þ= S0ðr1ÞS0ðr2Þ½ �. Hence, the length of the coher-
ence Poincaré vectors can be viewed as the intensity-
normalized distance between the squared singular values
m2þ and m2� of the CSD matrix, and their directions are
specified by the singular vectors v̂þ and ûþ corresponding
to the larger singular value m+.

Next, we elucidate the physical meaning of the formal-
ism. Firstly, for a completely coherent beam the degree of
coherence equals unity, which yields PXl2 ¼ 1 [4] and hence
the vectors q12 and q21 are unit-length vectors. Fully coher-
ent beams are thus located on the surface of a unit sphere in
the ðq1; q2; q3Þ space. Secondly, the origin is preserved for
beams with PX ¼ 0 or l ¼ 0. The former includes the
so-called pure unpolarized beams [18] and beams that can
be transformed into such by a suitable unitary operation
[5]. The latter naturally means that the beam is spatially
fully incoherent.

For a fully polarized but spatially partially coherent
beam PX ¼ 1 holds [4], and the lengths of the coherence
Poincaré vectors depend only on the degree of coherence
as jq12j ¼ jq21j ¼ l2. In addition, we note that the CSD
matrix of a beam with an arbitrary state of full polariza-
tion can be written as W12 ¼ W 12ê�1ê

T
2 , where W 12 ¼

hE�ðr1ÞEðr2Þi is a correlation function over an ensemble
of random scalars Eðr;xÞ, and ên ¼ êðrn;xÞ, n ¼ 1; 2,
are the deterministic Jones vectors that specify the polariza-
tion state of the beam at positions rn. As a consequence, the
singular vectors are of the form v̂þ ¼ ê�2 and ûþ ¼ ê�1.
This implies that the coherence Poincaré vectors are
expressible as q12 ¼ l2s2 and q21 ¼ l2s1, where sn ¼
½s1ðrnÞ; s2ðrnÞ; s3ðrnÞ� represent the polarization Poincaré
vectors at rn with sjðrnÞ ¼ tr ðrjWnnÞ=S0ðrnÞ, j ¼ 1; 2; 3,
being the (normalized) polarization Stokes parameters,
n ¼ 1; 2. In other words, for a fully polarized beam the
directions of the coherence Poincaré vectors depict the state

of polarization as in the context of the polarization Poincaré
sphere. The coordinate axes in the ðq1; q2; q3Þ space repre-
sent the states of x, y, �45	, right-hand, and left-hand
circular polarization whereas elsewhere the beam is ellipti-
cally polarized. The vector q12 points out the polarization
state of the beam at r2 and q21 does so at r1. Furthermore,
if the state of polarization is uniform across the beam, these
vectors converge into a single coherence Poincaré vector
whose orientation expresses the uniform polarization state
and length displays the squared degree of coherence at a
pair of points. Finally, we observe that in a single point,
r1 ¼ r2 ¼ r, the quantities qjðr; rÞ reduce to the polariza-
tion Stokes parameters sjðrÞ, j ¼ 1; 2; 3, and the vector
qðr; rÞ ¼ sðrÞ is the polarization Poincaré vector. Conse-
quently, the traditional polarization Poincaré sphere [6, 7]
is encountered when the formalism is applied at a single
point. The various reductions described above are illus-
trated graphically in Figure 1.

3 Conclusion

In summary, as an extension to the previous works [4, 5],
we have derived the concept of the Poincaré sphere of

Figure 1. Poincaré sphere of electromagnetic spatial coherence.
For an arbitrary partially polarized and partially coherent beam
two coherence Poincaré vectors q12 and q21 with the same length
PXl2 but different orientations are generally needed (Sphere A).
If the beam is fully polarized the lengths of these vectors display
the degree of coherence, jq12j ¼ jq21j ¼ l2, and their directions
show the polarization state of the beam at points r2 and r1,
respectively (Sphere B). If the beam is uniformly polarized, these
vectors coincide and a single coherence Poincaré vector q is
sufficient to represent the beam, with its length again showing
the degree of coherence and the direction specifying the
polarization state (Sphere C). At a single point the formalism
reduces to the traditional polarization Poincaré sphere where the
distance from the origin is given by the degree of polarization P
[1] (Sphere D).
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electromagnetic two-point spatial coherence exclusively
from the point of view of the singular value decomposition
of the cross-spectral density matrix. The interpretation of
the concept for an arbitrary partially polarized, partially
spatially coherent beam follows directly from this approach;
the state of coherence of the beam is depicted by two coher-
ence Poincaré vectors whose lengths are defined by the
normalized distance between the (squared) singular values
of the CSD matrix and orientations are determined by
the singular vectors related to the larger singular value.
Furthermore, we highlighted the interpretation of this con-
struction for fully polarized beams for which the coherence
and polarization characteristics are closely linked, and
noted that at a single point the formalism coincides with
the traditional polarization Poincaré sphere.
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