• Journal of the European Optical Society-Rapid Publications
  • Vol. 18, Issue 2, 2022012 (2022)
Jyrki Laatikainen1、*, Ari T. Friberg1, Olga Korotkova2, and Tero Setälä1
Author Affiliations
  • 1Institute of Photonics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
  • 2Department of Physics, University of Miami, Coral Gables, FL 33146, USA
  • show less
    DOI: 10.1051/jeos/2022012 Cite this Article
    Jyrki Laatikainen, Ari T. Friberg, Olga Korotkova, Tero Setälä. Singular value representation of the coherence Poincaré sphere[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022012 Copy Citation Text show less

    Abstract

    The so-called coherence Poincaré sphere was recently introduced for geometrical visualization of the state of two-point spatial coherence of a random electromagnetic beam. The formalism and its interpretation strongly utilized a specific decomposition of the Gram matrix of the cross-spectral density (CSD) matrix. In this work, we show that the interpretation of the coherence Poincaré sphere is obtained exclusively and straightforwardly via the singular value decomposition of the CSD matrix.The so-called coherence Poincaré sphere was recently introduced for geometrical visualization of the state of two-point spatial coherence of a random electromagnetic beam. The formalism and its interpretation strongly utilized a specific decomposition of the Gram matrix of the cross-spectral density (CSD) matrix. In this work, we show that the interpretation of the coherence Poincaré sphere is obtained exclusively and straightforwardly via the singular value decomposition of the CSD matrix.

    1 Introduction

    Optical coherence theory deals with the analysis and consequences of randomness in optical fields which gives rise to partial (spatial and temporal) coherence of light [1, 2]. A topic of substantial interest in the last two decades has been the coherence properties of vectorial light [3], and among the very recent results is the geometrical representation called the coherence Poincaré sphere [4, 5]. This formalism displays the spatial coherence of a random electromagnetic beam similarly as the traditional Poincaré sphere [6, 7] depicts the beam’s polarization characteristics, and it is the first graphical representation of electromagnetic two-point coherence. Illustrative geometrical interpretations of this kind are often found to be extremely useful in physics as evidenced by the conventional Poincaré sphere in polarization optics and the Bloch sphere in quantum mechanics [8]. In optics, the Poincaré sphere and its variants have found important applications, e.g., in the context of full Poincaré beams [9], orbital angular momentum [10], higher-order polarization states [11, 12], vector fields [13], and scalar two-beam interference [14].

    In the previous works [4, 5], the derivation and interpretation of the coherence Poincaré sphere was based on decomposing the Gram matrix of the cross-spectral density (CSD) into two parts in full analogy to the division of the polarization matrix [1] into parts corresponding to a completely unpolarized and fully polarized beams. The present work complements and extends these earlier studies by employing the singular value decomposition (SVD) of the CSD matrix, which was utilized in [5] and more extensively studied in [15]. More precisely, we derive the formalism of the coherence Poincaré sphere using the SVD exclusively, and show that this approach leads to a physical interpretation for the sphere as a geometric representation of the intertwined coherence and polarization information conveyed by the singular values and vectors of the CSD matrix.

    2 Discussion

    Consider a random, polychromatic, and statistically stationary electromagnetic beam field. The spatial coherence properties of the field at two positions r1 and r2 on a transversal plane with respect to the propagation direction are described in the space-frequency domain by the CSD matrix [1, 2, 6, 16]Wr1,r2,ω=E*(r1,ω)ET(r2,ω), taken as an average over an ensemble of monochromatic (transverse, two component) electric field realizations E(r, ω) at angular frequency ω. The angle brackets, asterisk, and superscript T stand for the ensemble average, complex conjugate, and matrix transpose, respectively. The SVD of the CSD matrix is written as [57]W12=UDV, where the dagger denotes Hermitian conjugation and W12 = W(r1, r2, ω). From now on we do not explicitly show the frequency dependence of various quantities. In equation (2),U=[û+,û-] andV=[v̂+,v̂-] are unitary matrices, and D = diag[ν+,ν], with ν+ and ν representing the singular values of the CSD. The complex unit vectors û± andv̂± in the columns of U and V are the left and right singular vectors of the CSD matrix obeyingW12v̂±=ν±û±,W12û±=ν±v̂±.

    The singular values are real and satisfy ν+ν-0. Furthermore, their squares coincide with the eigenvalues of the Gram matrices of the CSD and its Hermitian adjoint given, respectively, by [4, 5]Ω12=W12W12,Ω21=W12W12,

    where Ω12 = Ω(r1, r2, ω), Ω21 = Ω(r2, r1, ω), and we employed the quasi-Hermiticity propertyW12=W21. We note that the Gram matrices contain second-order coherence information only. The vectorsv̂± andû± fulfil the eigenvalue equationsΩ12v̂±=ν±2v̂±,Ω21û±=ν±2û±.

    Expressions for ν±2 can therefore be obtained from the characteristic equationdet(Ω12-ν±2σ0)=0, where σ0 is the 2×2 unit matrix and det denotes the determinant. The characteristic equation can be written asν±4-tr Ω12ν±2+detΩ12=0, where tr stands for the trace. The (squared) singular values are then obtained asν±2=12tr Ω121±PΩr1,r2, wherePΩ(r1,r2)=1-4detΩ12tr2Ω121/2 is bounded as 0 ≤ PΩ(r1,r2) ≤ 1.

    Next, we highlight some central properties of Ω12 and Ω21. Firstly, they are Hermitian and nonnegative definite matrices that satisfy the conditions Ω12=Ω12,Ω21=Ω21,tr Ω12=tr Ω21, det Ω12 = det Ω21 ≥ 0, and contain nonnegative diagonal entries. Secondly, the coherence information in matrix Ω12 is generally different from that in Ω21 due to the quasi-Hermiticity of the CSD matrix as is evident from equations (5) and (6). The mathematical properties of Ω12 and Ω21 are similar to those of the polarization matrix and they can formally be decomposed into two parts, one of which is proportional to the identity matrix and the other has zero determinant. This division is analogous to the decomposition of the polarization matrix into parts corresponding to a completely unpolarized beam and a fully polarized beam [1]. The earlier works concerning the coherence Poincaré sphere [4, 5] were extensively based on this division. Here we follow a different procedure and interpret the sphere using the SVD of the CSD only.

    We proceed by defining the Stokes parameters of Ω12 asQj(r1,r2)=tr(σjΩ12), j=0,,3, where σj, with j ∈ (1, 2, 3), are the Pauli spin matrices [1]. We remark that analogous definitions hold naturally for Ω21. These parameters are real-valued and contain information on the two-point spatial coherence of the beam. The Stokes parameters can be normalized asqj(r1,r2)=Qj(r1,r2)S0(r1)S0(r2), j=0,,3, with S0(r) = trW(r, r, ω) being the spectral density of the beam. The parameters qj(r1,r2), j = 1, 2, 3, obey the quadratic equationq12(r1,r2)+q22(r1,r2)+q32(r1,r2)=PΩ2(r1,r2)μ4(r1,r2), whereμ(r1,r2)=tr Ω12S0(r1)S0(r2)1/2 is the electromagnetic degree of coherence [3, 17]. This degree is bounded as 0 ≤ μ(r1,r2) ≤ 1, with the lower and upper bounds corresponding to complete incoherence and full coherence of the beam at points r1 and r2, respectively.

    Next we approach the geometric interpretation of the coherence Poincaré sphere in equation (14) via the singular value decomposition of the CSD. We first define the coherence Poincaré vectorq(r1,r2)=q1(r1,r2),q2(r1,r2),q3(r1,r2), that displays the spatial coherence information in Ω12 as points on or within a unit sphere in the (q1, q2, q3) space. We remark that since the information content of Ω12 is in general different from that of Ω21, two coherence Poincaré vectors q12 = q(r1,r2) and q21 = q(r2,r1) are required to display the spatial coherence of the beam. Analytical expressions of these vectors are obtained from the SVD of the CSD matrix as is shown below. For this purpose we recall the unitarity conditions UU = VV = σ0, which together with the SVD and equations (5) and (6) yieldΩ12=ν+2v̂+v̂++ν-2v̂-v̂-,Ω21=ν+2û+û++ν-2û-û-.

    Furthermore, unitarity of U and V implies that v̂+v̂++v̂-v̂-=σ0 and similarly forû±. These together with equations (10), (17), and (18) result inΩ12=tr Ω121-PΩ2σ0+PΩv̂+v̂+,Ω21=tr Ω211-PΩ2σ0+PΩû+û+, where we have written PΩ = PΩ(r1,r2). It is important to note that these two expressions coincide with the decompositions in equation (3) of [4] and equation (8) of [5] which constituted the starting point of the mentioned works without a reference to the SVD. Combining the equations above with the definitions in equations (12), (13), (15), and (16), we find thatq12=PΩμ2v+x2-v+y2,2Re(v+xv+y*),2Im(v+xv+y*),q21=PΩμ2u+x2-u+y2,2Re(u+xu+y*),2Im(u+xu+y*), where μ = μ(r1,r2). These expressions provide the singular-value interpretation of the two coherence Poincaré vectors that represent the state of spatial coherence of a partially coherent and partially polarized electromagnetic beam. Both vectors have the same length, |q12| = |q21| = PΩμ2, and their directions are specified by the vectors v̂+ andû+. In addition, we note that the equalitiestr Ω12=ν+2+ν-2 anddetΩ12=ν+2ν-2 are obtained from equation (10), and by using them together with equations (11) and (15) we see thatPΩμ2=(ν+2-ν-2)/S0(r1)S0(r2). Hence, the length of the coherence Poincaré vectors can be viewed as the intensity-normalized distance between the squared singular valuesν+2 andν-2 of the CSD matrix, and their directions are specified by the singular vectorsv̂+ andû+ corresponding to the larger singular value ν+.

    Next, we elucidate the physical meaning of the formalism. Firstly, for a completely coherent beam the degree of coherence equals unity, which yields PΩμ2=1 [4] and hence the vectorsq12 andq21 are unit-length vectors. Fully coherent beams are thus located on the surface of a unit sphere in the(q1,q2,q3) space. Secondly, the origin is preserved for beams withPΩ=0 orμ=0. The former includes the so-called pure unpolarized beams [18] and beams that can be transformed into such by a suitable unitary operation [5]. The latter naturally means that the beam is spatially fully incoherent.

    For a fully polarized but spatially partially coherent beam PΩ=1 holds [4], and the lengths of the coherence Poincaré vectors depend only on the degree of coherence as|q12|=|q21|=μ2. In addition, we note that the CSD matrix of a beam with an arbitrary state of full polarization can be written asW12=W12ê1*ê2T, whereW12=E*(r1)E(r2) is a correlation function over an ensemble of random scalarsE(r,ω), andên=ê(rn,ω),n=1,2, are the deterministic Jones vectors that specify the polarization state of the beam at positionsrn. As a consequence, the singular vectors are of the formv̂+=ê2* andû+=ê1*. This implies that the coherence Poincaré vectors are expressible asq12=μ2s2 andq21=μ2s1, wheresn=[s1(rn),s2(rn),s3(rn)] represent the polarization Poincaré vectors atrn withsj(rn)=tr (σjWnn)/S0(rn),j=1,2,3, being the (normalized) polarization Stokes parameters,n=1,2. In other words, for a fully polarized beam the directions of the coherence Poincaré vectors depict the state of polarization as in the context of the polarization Poincaré sphere. The coordinate axes in the(q1,q2,q3) space represent the states ofx,y,±45, right-hand, and left-hand circular polarization whereas elsewhere the beam is elliptically polarized. The vectorq12 points out the polarization state of the beam atr2 andq21 does so atr1. Furthermore, if the state of polarization is uniform across the beam, these vectors converge into a single coherence Poincaré vector whose orientation expresses the uniform polarization state and length displays the squared degree of coherence at a pair of points. Finally, we observe that in a single point,r1=r2=r, the quantitiesqj(r,r) reduce to the polarization Stokes parameterssj(r),j=1,2,3, and the vectorq(r,r)=s(r) is the polarization Poincaré vector. Consequently, the traditional polarization Poincaré sphere [6, 7] is encountered when the formalism is applied at a single point. The various reductions described above are illustrated graphically in Figure 1.

    Poincaré sphere of electromagnetic spatial coherence. For an arbitrary partially polarized and partially coherent beam two coherence Poincaré vectors q12 andq21 with the same lengthPΩμ2 but different orientations are generally needed (Sphere A). If the beam is fully polarized the lengths of these vectors display the degree of coherence,|q12|=|q21|=μ2, and their directions show the polarization state of the beam at pointsr2 andr1, respectively (Sphere B). If the beam is uniformly polarized, these vectors coincide and a single coherence Poincaré vectorq is sufficient to represent the beam, with its length again showing the degree of coherence and the direction specifying the polarization state (Sphere C). At a single point the formalism reduces to the traditional polarization Poincaré sphere where the distance from the origin is given by the degree of polarizationP [1] (Sphere D).

    Figure 1.Poincaré sphere of electromagnetic spatial coherence. For an arbitrary partially polarized and partially coherent beam two coherence Poincaré vectors q12 andq21 with the same lengthPΩμ2 but different orientations are generally needed (Sphere A). If the beam is fully polarized the lengths of these vectors display the degree of coherence,|q12|=|q21|=μ2, and their directions show the polarization state of the beam at pointsr2 andr1, respectively (Sphere B). If the beam is uniformly polarized, these vectors coincide and a single coherence Poincaré vectorq is sufficient to represent the beam, with its length again showing the degree of coherence and the direction specifying the polarization state (Sphere C). At a single point the formalism reduces to the traditional polarization Poincaré sphere where the distance from the origin is given by the degree of polarizationP [1] (Sphere D).

    3 Conclusion

    In summary, as an extension to the previous works [4, 5], we have derived the concept of the Poincaré sphere of electromagnetic two-point spatial coherence exclusively from the point of view of the singular value decomposition of the cross-spectral density matrix. The interpretation of the concept for an arbitrary partially polarized, partially spatially coherent beam follows directly from this approach; the state of coherence of the beam is depicted by two coherence Poincaré vectors whose lengths are defined by the normalized distance between the (squared) singular values of the CSD matrix and orientations are determined by the singular vectors related to the larger singular value. Furthermore, we highlighted the interpretation of this construction for fully polarized beams for which the coherence and polarization characteristics are closely linked, and noted that at a single point the formalism coincides with the traditional polarization Poincaré sphere.

    References

    [1] L. Mandel, E. Wolf. Optical coherence and quantum optics(1995).

    [2] O. Korotkova. Random light beams: theory and applications(2014).

    [3] A.T. Friberg, T. Setälä. Electromagnetic theory of optical coherence [Invited]. J. Opt. Soc. Am. A, 33, 2431(2016).

    [4] J. Laatikainen, A.T. Friberg, O. Korotkova, T. Setälä. Poincaré sphere of electromagnetic spatial coherence. Opt. Lett., 46, 2143(2021).

    [5] J. Laatikainen, A.T. Friberg, O. Korotkova, T. Setälä. Coherence Poincaré sphere of partially polarized optical beams. Phys. Rev. A, 105, 033506(2022).

    [6] C. Brosseau. Fundamentals of polarized light: a statistical optics approach(1998).

    [7] J.J. Gil, R. Ossikovski. Polarized light and the Mueller matrix approach(2016).

    [8] A. Nielsen, I.L. Chuang. Quantum computation and quantum information(2010).

    [9] A.M. Beckley, T.G. Brown, M.A. Alonso. Full Poincaré beams. Opt. Express, 18, 10777(2010).

    [10] M.J. Padgett, J. Courtial. Poincaré sphere equivalent for light beams containing orbital angular momentum. Opt. Lett., 24, 439(1999).

    [11] G. Milione, H.I. Sztul, D.A. Nolan, R.R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [12] X. Zang, G. Bautista, L. Turquet, T. Setälä, M. Kauranen, J. Turunen. Efficient hybrid-mode excitation in plasmonic nanoantennas by tightly focused higher-order vector beams. J. Opt. Soc. Am. B., 38, 521(2021).

    [13] Z.C. Ren, L.J. Kong, S.M. Li, S.X. Qian, Y. Li, C. Tu, H.T. Wang. Generalized Poincaré sphere. Opt. Express, 23, 26586(2015).

    [14] A. Halder, A. Norrman, A.T. Friberg. Poincaré sphere representation of scalar two-beam interference under spatial unitary transformations. Opt. Lett., 46, 5619(2021).

    [15] M. Luo, J. Laatikainen, A.T. Friberg, O. Korotkova, T. Setälä. Singular-value decomposition and electromagnetic coherence of optical beams. Opt. Lett., 47, 5337(2022).

    [16] J. Tervo, T. Setälä, A.T. Friberg. Theory of partially coherent electromagnetic fields in the space–frequency domain. J. Opt. Soc. Am. A, 21, 2205(2004).

    [17] J. Tervo, T. Setälä, A.T. Friberg. Degree of coherence for electromagnetic fields. Opt. Express, 11, 1137(2003).

    [18] F. Gori, J. Tervo, J. Turunen. Correlation matrices of completely unpolarized beams. Opt. Lett., 34, 1447(2009).

    Jyrki Laatikainen, Ari T. Friberg, Olga Korotkova, Tero Setälä. Singular value representation of the coherence Poincaré sphere[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022012
    Download Citation