• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0514003 (2022)
Gongming Guo1、2 and Yanqiang Guo1、2、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • 2College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • show less
    DOI: 10.3788/LOP202259.0514003 Cite this Article Set citation alerts
    Gongming Guo, Yanqiang Guo. Two-Mode Chaos Generation in Quantum Dot Micropillar Lasers Subject to Optical Feedback[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0514003 Copy Citation Text show less
    References

    [1] Reitzenstein S, Heindel T, Kistner C et al. Electrically driven quantum dot micropillar light sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1670-1680(2011).

    [2] Gericke F, Segnon M, von Helversen M et al. Controlling the gain contribution of background emitters in few-quantum-dot microlasers[J]. New Journal of Physics, 20, 023036(2018).

    [3] Kreinberg S, Porte X, Schicke D et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels[J]. Nature Communications, 10, 1539(2019).

    [4] Virte M, Breuer S, Sciamanna M et al. Switching between ground and excited states by optical feedback in a quantum dot laser diode[J]. Applied Physics Letters, 105, 121109(2014).

    [5] Reithmaier J P, Sek G, Löffler A et al. Strong coupling in a single quantum dot-semiconductor microcavity system[J]. Nature, 432, 197-200(2004).

    [6] Santori C, Fattal D, Vučković J et al. Indistinguishable photons from a single-photon device[J]. Nature, 419, 594-597(2002).

    [7] Gazzano O, de Vasconcellos S M, Arnold C et al. Bright solid-state sources of indistinguishable single photons[J]. Nature Communications, 4, 1425(2013).

    [8] Ding X, He Y, Duan Z C et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 116, 020401(2016).

    [9] Unsleber S, He Y M, Gerhardt S et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency[J]. Optics Express, 24, 8539-8546(2016).

    [10] Schlottmann E, Holzinger S, Lingnau B et al. Injection locking of quantum-dot microlasers operating in the few-photon regime[J]. Physical Review Applied, 6, 044023(2016).

    [11] Hopfmann C, Albert F, Schneider C et al. Nonlinear emission characteristics of quantum dot-micropillar lasers in the presence of polarized optical feedback[J]. New Journal of Physics, 15, 025030(2013).

    [12] Holzinger S, Redlich C, Lingnau B et al. Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback[J]. Optics Express, 26, 22457-22470(2018).

    [13] Albert F, Hopfmann C, Reitzenstein S et al. Observing chaos for quantum-dot microlasers with external feedback[J]. Nature Communications, 2, 366(2011).

    [14] Redlich C, Lingnau B, Holzinger S et al. Mode-switching induced super-thermal bunching in quantum-dot microlasers[J]. New Journal of Physics, 18, 063011(2016).

    [15] Guo Y Q, Peng C S, Ji Y L et al. Photon statistics and bunching of a chaotic semiconductor laser[J]. Optics Express, 26, 5991-6000(2018).

    [16] Guo X M, Cheng C, Wu M C et al. Parallel real-time quantum random number generator[J]. Optics Letters, 44, 5566-5569(2019).

    [17] Guo X M, Liu R P, Li P et al. Enhancing extractable quantum entropy in vacuum-based quantum random number generator[J]. Entropy, 20, 819(2018).

    [18] Zhang Q, Deng X W, Tian C X et al. Quantum random number generator based on twin beams[J]. Optics Letters, 42, 895-898(2017).

    [19] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [20] Reidler I, Aviad Y, Rosenbluh M et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 103, 024102(2009).

    [21] Wang A B, Li P, Zhang J et al. 4.5 Gbps high-speed real-time physical random bit generator[J]. Optics Express, 21, 20452-20462(2013).

    [22] Guo X M, Liu T, Wang L J et al. Evaluating entropy rate of laser chaos and shot noise[J]. Optics Express, 28, 1238-1248(2020).

    [23] Zhang L M, Pan B W, Chen G C et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser[J]. Scientific Reports, 8, 45900(2017).

    [24] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 20, 1636-1638(2008).

    [25] Zhao Z X, Cheng M F, Luo C K et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution[J]. Optics Letters, 44, 2605-2608(2019).

    [26] Wu M, Wang L S, Wang Y C et al. Research on chaos resynchronization time of vertical-cavity surface-emitting lasers[J]. Laser & Optoelectronics Progress, 57, 210607(2020).

    [27] Xu M F, Pan W, Zhang L Y. Secure remote synchronization and secure key distribution in electro-optic networks revealed by symmetries[J]. Optics Communications, 418, 41-45(2018).

    [28] Sun J, Zhu S Q. Chaotic synchronization of intensities and phases in two multi-mode laser fields[J]. Chinese Journal of Quantum Electronics, 22, 743-748(2005).

    [29] Liu H J, Feng J C. Effect of system gain on optical chaotic communications systems[J]. Acta Physica Sinica, 58, 1484-1490(2009).

    [30] Li Q, Deng T, Wu Z M et al. Security-enhanced bidirectional long-distance chaos secure communication[J]. Chinese Journal of Lasers, 45, 0106001(2018).

    [31] Li Z, Feng Y L, Yao Z H. Autocorrelation and bandwidth research of chaotic laser from semiconductor lasers[J]. Laser & Optoelectronics Progress, 55, 021405(2018).

    [32] Sun W Y, Hu B J, Wang H. Chaos synchronization communication based on dual-path mutual coupling semiconductor lasers[J]. Laser & Optoelectronics Progress, 56, 211404(2019).

    [33] Lü T S, Yang Q, Yu X Y et al. 50 GHz broadband chaotic signal generator[J]. Laser & Optoelectronics Progress, 56, 131403(2019).

    [34] Zhang Q, Pan W, Li N Q et al. Investigation on security enhancement of chaotic optical communication systems via coupling delay[J]. Chinese Journal of Lasers, 39, 0102009(2012).

    [35] Xue C P, Jiang N, Lü Y et al. Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems[J]. IEEE Transactions on Communications, 65, 312-319(2017).

    [36] Luo X S, Wang B H, Jiang P Q et al. A method of digital secure communication based on asymptotic synchronization of chaos[J]. Journal of China Institute of Communications, 24, 60-65(2003).

    [37] Pan X M, Wu Z M, Tang X et al. Chaos synchronization and communication in mesh network based on mutually coupled semiconductor lasers[J]. Chinese Journal of Lasers, 40, 1202005(2013).

    [38] Hu H P, Chen X F, Su W et al. Multi-coupled chaos synchronization and communication based on optoelectronic feedback delay[J]. Acta Optica Sinica, 34, 0406006(2014).

    [39] Yan S L. Theoretical studies on chaotic semiconductor laser dual-directional secure communication system[J]. Chinese Journal of Lasers, 32, 1503-1509(2005).

    [40] Virte M, Panajotov K, Thienpont H et al. Deterministic polarization chaos from a laser diode[J]. Nature Photonics, 7, 60-65(2013).

    [41] Wei Z W, Liu M, Ming S X et al. Pulsating soliton with chaotic behavior in a fiber laser[J]. Optics Letters, 43, 5965-5968(2018).

    [42] Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 40, 815-820(2004).

    [43] Wang Y S, Wang Y C, Guo Y Q. Research progress of the photonic integrated chaotic lasers[J]. Laser & Optoelectronics Progress, 54, 100005(2017).

    [44] Rontani D, Locquet A, Sciamanna M et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 45, 879-891(2009).

    [45] Wang Y, Xiang S Y, Wang B et al. Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with FBG filtered injection[J]. Optics Express, 27, 8446-8455(2019).

    [46] Ji Y L, Guo X M, Li P et al. Suppression of time-delay signature and enhancement of stochastic statistical properties of chaotic laser by filtering[J]. Chinese Journal of Lasers, 45, 1008001(2018).

    [47] Ding L, Wu J G, Xia G Q et al. Suppression of time delay feedback signatures in a semiconductor laser with double optical feedback[J]. Acta Physica Sinica, 60, 014210(2011).

    [48] Zhang Y N, Feng Y L, Wang X Q et al. Time delay signature and bandwidth of chaotic laser output from semiconductor laser[J]. Acta Physica Sinica, 69, 090501(2020).

    [49] Xiang S Y, Pan W, Zhang L Y et al. Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser[J]. Optics Communications, 324, 38-46(2014).

    [50] Zhang X X, Wu T A, Chang K G et al. Time-delay characteristic and bandwidth analysis of chaotic output from single-ended feedback and mutually coupled vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 44, 0501010(2017).

    [51] Liu P B, Zhang S H, Zhang X X et al. Analysis of time-delay characteristic and effective bandwidth of three chaotic semiconductor laser systems[J]. Laser & Optoelectronics Progress, 57, 131407(2020).

    [52] Reitzenstein S, Hofmann C, Gorbunov A et al. AlAs/GaAs micropillar cavities with quality factors exceeding 150.000[J]. Applied Physics Letters, 90, 251109(2007).

    Gongming Guo, Yanqiang Guo. Two-Mode Chaos Generation in Quantum Dot Micropillar Lasers Subject to Optical Feedback[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0514003
    Download Citation