• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 024002 (2023)
Matteo Cherchi, Arijit Bera, Antti Kemppinen, Jaani Nissilä, Kirsi Tappura, Marco Caputo, Lauri Lehtimäki, Janne Lehtinen, Joonas Govenius, Tomi Hassinen, Mika Prunnila, and Timo Aalto*
Author Affiliations
  • VTT Technical Research Centre of Finland Ltd., Espoo, Finland
  • show less
    DOI: 10.1117/1.APN.2.2.024002 Cite this Article Set citation alerts
    Matteo Cherchi, Arijit Bera, Antti Kemppinen, Jaani Nissilä, Kirsi Tappura, Marco Caputo, Lauri Lehtimäki, Janne Lehtinen, Joonas Govenius, Tomi Hassinen, Mika Prunnila, Timo Aalto. Supporting quantum technologies with an ultralow-loss silicon photonics platform[J]. Advanced Photonics Nexus, 2023, 2(2): 024002 Copy Citation Text show less
    References

    [1] A. Acín et al. The quantum technologies roadmap: a European Community view. New J. Phys., 20, 080201(2018).

    [2] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [3] A. W. Elshaari et al. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020).

    [4] S. Rodt, S. Reitzenstein. Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters. APL Photonics, 6, 010901(2021).

    [5] E. Pelucchi et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys., 4, 194-208(2022).

    [6] G. Moody et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photonics, 4, 012501(2022).

    [7] T. Aalto et al. Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 1-9(2019). https://doi.org/10.1109/JSTQE.2019.2908551

    [8] A. Bera et al. Ultra-low loss waveguide platform in silicon photonics. Proc. SPIE, 12006, 1200603(2022).

    [9] Y. Marin et al. Ultra-high-Q racetrack on thick SOI platform through hydrogen annealing, We4E.3(2022).

    [10] T. Vehmas et al. Monolithic integration of up to 40 GHz Ge photodetectors in 3  μm SOI. Proc. SPIE, 11285, 112850V(2020).

    [11] M. Cherchi et al. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt. Express, 21, 17814-17823(2013).

    [12] B. Zhang et al. Compact multi-million Q resonators and 100 MHz passband filter bank in a thick-SOI photonics platform. Opt. Lett., 45, 3005-3008(2020).

    [13] D. Shahwar et al. Polarization splitters for micron-scale silicon photonics. Proc. SPIE, 11691, 1169104(2021).

    [14] D. Jalas et al. Faraday rotation in silicon waveguides, 141-142(2017).

    [15] F. Gao et al. A modified Bosch process for smooth sidewall etching, 69-72(2011).

    [16] F. Gao et al. Smooth silicon sidewall etching for waveguide structures using a modified Bosch process. J. MicroNanolithogr. MEMS MOEMS, 13, 013010(2014).

    [17] R. A. Soref, J. Schmidtchen, K. Petermann. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2. IEEE J. Quantum Electron., 27, 1971-1974(1991). https://doi.org/10.1109/3.83406

    [18] P.-I. Dietrich et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photonics, 12, 241-247(2018).

    [19] T. Aalto. Broadband and polarization independent waveguide-fiber coupling, 12426-12440(2023).

    [20] A. Rahim et al. Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron., 25, 1-18(2019).

    [21] G. Z. Mashanovich et al. Low loss silicon waveguides for the mid-infrared. Opt. Express, 19, 7112-7119(2011).

    [22] P. Karioja et al. Integrated multi-wavelength mid-IR light source for gas sensing. Proc. SPIE, 10657, 106570A(2018).

    [23] C. Lindner et al. High-sensitivity quantum sensing with pump-enhanced spontaneous parametric down-conversion(2022).

    [24] H. Rong et al. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Appl. Phys. Lett., 85, 2196-2198(2004).

    [25] A. Gil-Molina et al. Optical free-carrier generation in silicon nano-waveguides at 1550 nm. Appl. Phys. Lett., 112, 251104(2018).

    [26] B. Morrison et al. Four-wave mixing and nonlinear losses in thick silicon waveguides. Opt. Lett., 41, 2418-2421(2016).

    [27] M. Pagani et al. Low-error and broadband microwave frequency measurement in a silicon chip. Optica, 2, 751(2015).

    [28] T. Aalto et al. Total internal reflection mirrors with ultra-low losses in 3  μm thick SOI waveguides. Proc SPIE, 9367, 93670B(2015).

    [29] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics(1991).

    [30] M. Cherchi, T. Aalto. Bent optical waveguide(2014).

    [31] X. Jiang, H. Wu, D. Dai. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express, 26, 17680-17689(2018).

    [32] C. Li, D. Liu, D. Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2019).

    [33] A. Mohanty et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun., 8, 14010(2017).

    [34] F. Brandt et al. High-dimensional quantum gates using full-field spatial modes of photons. Optica, 7, 98-107(2020).

    [35] M. Piccardo et al. Roadmap on multimode light shaping. J. Opt., 24, 013001(2021).

    [36] M. Hiekkamäki et al. Observation of the quantum Gouy phase. Nat. Photonics, 16, 828-833(2022).

    [37] Y. Wang, D. Dai, D. Dai. Multimode silicon photonic waveguide corner-bend. Opt. Express, 28, 9062-9071(2020).

    [38] T. Aalto. Devices and methods for polarization splitting(2020).

    [39] M. Harjanne, T. Aalto, M. Cherchi. Polarization rotator(2020).

    [40] H. Zbinden et al. Interferometry with Faraday mirrors for quantum cryptography. Electron. Lett., 33, 586-588(1997).

    [41] P. Jouguet et al. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [42] M. Martinelli. A universal compensator for polarization changes induced by birefringence on a retracing beam. Opt. Commun., 72, 341-344(1989).

    [43] M. Cherchi et al. MMI resonators based on metal mirrors and MMI mirrors: an experimental comparison. Opt. Express, 23, 5982-5993(2015).

    [44] M. Cherchi et al. Flat-top interleavers based on single MMIs. Proc. SPIE, 11285, 112850G(2020).

    [45] M. Cherchi et al. Fabrication tolerant flat-top interleavers. Proc SPIE, 10108, 101080V(2017).

    [46] S. Bhat et al. Low loss devices fabricated on the open access 3 μm SOI waveguide platform at VTT(2019).

    [47] A. Bera et al. Amorphous silicon waveguide escalator: monolithic integration of active components on 3-μm SOI platform. Proc. SPIE, 11285, 1128507(2020). https://doi.org/10.1117/12.2544311

    [48] J. Goldstein et al. Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform. Nat. Commun., 13, 3915(2022).

    [49] M. A. Giambra et al. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express, 27, 20145-20155(2019).

    [50] W. H. P. Pernice et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun., 3, 1325(2012).

    [51] Z. H. Jiang et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates. Sci. Rep., 4, 7511(2014).

    [52] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [53] I.-C. Benea-Chelmus et al. Electro-optic spatial light modulator from an engineered organic layer. Nat. Commun., 12, 5928(2021).

    [54] I.-C. Benea-Chelmus et al. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat. Commun., 13, 3170(2022).

    [55] S. Sabouri et al. Thermo optical phase shifter with low thermal crosstalk for SOI strip waveguide. IEEE Photonics J., 13, 1-12(2021).

    [56] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [57] D. W. Zheng, B. T. Smith, M. Asghari. Improved efficiency Si-photonic attenuator. Opt. Express, 16, 16754-16765(2008).

    [58] E. Timurdogan et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 11, 200-206(2017).

    [59] U. Chakraborty et al. Cryogenic operation of silicon photonic modulators based on the DC Kerr effect. Optica, 7, 1385(2020).

    [60] M. Gehl et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica, 4, 374(2017).

    [61] M. Burla et al. 500 GHz plasmonic Mach–Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 4, 056106(2019).

    [62] M. Cherchi. Electro-optic plasmonic devices(2021).

    [63] P. Habegger et al. Plasmonic 100-GHz electro-optic modulators for cryogenic applications, Tu1G.1(2022).

    [64] W. Heni et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun., 10, 1-8(2019).

    [65] P. Edinger et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett., 46, 5671-5674(2021).

    [66] T. Grottke et al. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express, 29, 5525-5537(2021).

    [67] M. Dong et al. High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture. Nat. Photonics, 16, 59-65(2021).

    [68] H. Xu et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic–organic hybrid devices. Mater. Horiz., 9, 261-270(2021).

    [69] A. Pizzone et al. Analysis of dark current in Ge-on-Si photodiodes at cryogenic temperatures, 1-2(2020).

    [70] S. Siontas et al. Low-temperature operation of high-efficiency germanium quantum dot photodetectors in the visible and near infrared. Phys. Status Solidi A, 215, 1700453(2018).

    [71] Q. Zhang et al. Low-loss and polarization-insensitive photonic integrated circuit based on micron-scale SOI platform for high density TDM PONs, 1-3(2017).

    [72] N. J. D. Martinez et al. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes. Opt. Express, 24, 19072-19081(2016).

    [73] P. Vines et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun., 10, 1086(2019).

    [74] Y. Salamin et al. 100 GHz plasmonic photodetector. ACS Photonics, 5, 3291-3297(2018).

    [75] S. Koepfli et al. >500 GHz bandwidth graphene photodetector enabling highest-capacity plasmonic-to-plasmonic links, Th3B.5(2022).

    [76] E. Mykkänen et al. Enhancement of superconductivity by amorphizing molybdenum silicide films using a focused ion beam. Nanomaterials, 10, 950(2020).

    [77] M. Häußler et al. Amorphous superconducting nanowire single-photon detectors integrated with nanophotonic waveguides. APL Photonics, 5, 076106(2020).

    [78] J. Chang et al. Detecting telecom single photons with 99.5–2.07+0.5% system detection efficiency and high time resolution. APL Photonics, 6, 036114(2021).

    [79] F. Beutel et al. Detector-integrated on-chip QKD receiver for GHz clock rates. NPJ Quantum Inf., 7, 40(2021).

    [80] B. Korzh et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [81] A. S. Mueller et al. Free-space coupled superconducting nanowire single-photon detector with low dark counts. Optica, 8, 1586-1587(2021).

    [82] J. E. Bourassa et al. Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum, 5, 392(2021).

    [83] J. M. Arrazola et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591, 54-60(2021).

    [84] L. S. Madsen et al. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75-81(2022).

    [85] L. You. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics, 9, 2673-2692(2020).

    [86] E. Mykkänen et al. Thermionic junction devices utilizing phonon blocking. Sci. Adv., 6, eaax9191(2020).

    [87] A. Kemppinen et al. Cascaded superconducting junction refrigerators: optimization and performance limits. Appl. Phys. Lett., 119, 052603(2021).

    [88] J. P. Höpker et al. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photonics, 4, 056103(2019).

    [89] B. Calkins et al. High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express, 21, 22657(2013).

    [90] M. R. J. Palosaari et al. Large 256-pixel X-ray transition-edge sensor arrays with Mo/TiW/Cu trilayers. IEEE Trans. Appl. Supercond., 25, 1-4(2015).

    [91] H. Akamatsu et al. Demonstration of MHz frequency domain multiplexing readout of 37 transition edge sensors for high-resolution x-ray imaging spectrometers. Appl. Phys. Lett., 119, 182601(2021).

    [92] L. Grönberg et al. Side-wall spacer passivated sub-μm Josephson junction fabrication process. Supercond. Sci. Technol., 30, 125016(2017). https://doi.org/10.1088/1361-6668/aa9411

    [93] J. Luomahaara et al. Unshielded SQUID sensors for ultra-low-field magnetic resonance imaging. IEEE Trans. Appl. Supercond., 28, 1-4(2018).

    [94] S. Simbierowicz et al. A flux-driven Josephson parametric amplifier for sub-GHz frequencies fabricated with side-wall passivated spacer junction technology. Supercond. Sci. Technol., 31, 105001(2018).

    [95] S. Simbierowicz et al. Characterizing cryogenic amplifiers with a matched temperature-variable noise source. Rev. Sci. Instrum., 92, 034708(2021).

    [96] M. Perelshtein et al. Broadband continuous variable entanglement generation using Kerr-free Josephson metamaterial(2021).

    [97] Application note: photon number resolving detectors(2021).

    [98] C. Cahall et al. Multi-photon detection using a conventional superconducting nanowire single-photon detector. Optica, 4, 1534-1535(2017).

    [99] R. Cheng et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photonics, 17, 112-119(2023).

    [100] G. E. Hoefler et al. Foundry development of system-on-chip InP-based photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 1-17(2019).

    [101] J. Lin et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910-1936(2020).

    [102] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [103] E. Obrzud et al. Stable and compact RF-to-optical link using lithium niobate on insulator waveguides. APL Photonics, 6, 121303(2021).

    [104] A. Prencipe, M. A. Baghban, K. Gallo. Tunable ultranarrowband grating filters in thin-film lithium niobate. ACS Photonics, 8, 2923-2930(2021).

    [105] L. Chang et al. CSOI: beyond silicon-on-insulator photonics. Opt. Photonics News, 33, 24-32(2022).

    [106] T. Komljenovic et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE, 106, 2246-2257(2018).

    [107] M. Kapulainen et al. Hybrid integration of InP lasers with SOI waveguides using thermocompression bonding, 61-63(2008).

    [108] N. Somaschi et al. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340-345(2016).

    [109] E. Diamanti et al. Practical challenges in quantum key distribution. NPJ Quantum Inf., 2, npjqi201625(2016).

    [110] T. K. Paraïso et al. A modulator-free quantum key distribution transmitter chip. NPJ Quantum Inf., 5, 42(2019).

    [111] C. Ma et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica, 3, 1274-1278(2016).

    [112] P. Sibson et al. Chip-based quantum key distribution. Nat. Commun., 8, 1-6(2017).

    [113] P. Sibson et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 4, 172-177(2017).

    [114] H. Cai et al. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express, 25, 12282-12294(2017).

    [115] D. Bunandar et al. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X, 8, 021009(2018).

    [116] G. Zhang et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics, 13, 839-842(2019).

    [117] M. Avesani et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. NPJ Quantum Inf., 7, 1-8(2021).

    [118] T. K. Paraïso et al. A photonic integrated quantum secure communication system. Nat. Photonics, 15, 850-856(2021).

    [119] L. Cao et al. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 011001(2020).

    [120] M. Pittaluga et al. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photonics, 15, 530-535(2021).

    [121] S. Wang et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics, 16, 154-161(2022).

    [122] A. Boaron et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett., 121, 190502(2018).

    [123] M. Lucamarini et al. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400-403(2018).

    [124] D. Stucki et al. Fast and simple one-way quantum key distribution. Appl. Phys. Lett., 87, 194108(2005).

    [125] A. Boaron et al. Simple 2.5 GHz time-bin quantum key distribution. Appl. Phys. Lett., 112, 171108(2018).

    [126] L. C. Comandar et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics, 10, 312-315(2016).

    [127] H.-L. Yin et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [128] O. Kahl et al. Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits. Optica, 4, 557-562(2017).

    [129] X. Zheng et al. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution. Adv. Photonics, 3, 055002(2021).

    [130] X. Chi et al. Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity. Opt. Lett., 43, 5017-5020(2018).

    [131] D. V. Reddy et al. Broadband polarization insensitivity and high detection efficiency in high-fill-factor superconducting microwire single-photon detectors. APL Photonics, 7, 051302(2022).

    [132] C. Bruynsteen et al. Integrated balanced homodyne photonic–electronic detector for beyond 20 GHz shot-noise-limited measurements. Optica, 8, 1146-1152(2021).

    [133] H. Forsten et al. Millimeter-wave amplifier-based noise sources in SiGe BiCMOS technology. IEEE Trans. Microwaves Theory Tech., 69, 4689-4696(2021).

    [134] M. Varonen et al. Cryogenic W-band SiGe BiCMOS low-noise amplifier, 185-188(2020).

    [135] S. Lischke et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15, 925-931(2021).

    [136] K. C. Balram, K. Srinivasan. Piezoelectric optomechanical approaches for efficient quantum microwave‐to‐optical signal transduction: the need for co‐design. Adv. Quantum Technol., 5, 2100095(2022).

    [137] J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2, 79(2018).

    [138] A preview of Bristlecone, Google’s New Quantum Processor.

    [139] M. F. Gonzalez-Zalba et al. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron., 4, 872-884(2021).

    [140] J. Duan et al. Dispersive readout of reconfigurable ambipolar quantum dots in a silicon-on-insulator nanowire. Appl. Phys. Lett., 118, 164002(2021).

    [141] S. Neyens. High volume cryogenic measurement of silicon spin qubit devices from a 300 mm process line(2022).

    [142] S. G. J. Philips et al. Universal control of a six-qubit quantum processor in silicon. Nature, 609, 919-924(2022).

    [143] H. Bohuslavskyi et al. Scalable on-chip multiplexing of low-noise silicon electron and hole quantum dots(2022).

    [144] D. S. Holmes, A. L. Ripple, M. A. Manheimer. Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond., 23, 1701610(2013).

    [145] F. Lecocq et al. Control and readout of a superconducting qubit using a photonic link. Nature, 591, 575-579(2021).

    [146] B. Patra et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits, 53, 309-321(2018).

    [147] J. C. Bardin et al. A 28 nm bulk-CMOS 4-to-8 GHz <2 mW cryogenic pulse modulator for scalable quantum computing, 456-458(2019).

    [148] X. Xue et al. Quantum logic with spin qubits crossing the surface code threshold. Nature, 601, 343-347(2022).

    [149] K. K. Likharev, V. K. Semenov. RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond., 1, 3-28(1991).

    [150] O. A. Mukhanov. Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond., 21, 760-769(2011).

    [151] W. Chen et al. Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans. Appl. Supercond., 9, 3212-3215(1999).

    [152] C. Lv et al. Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator. AIP Adv., 8, 105018(2018).

    [153] A. J. Annunziata et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors. J. Appl. Phys., 108, 084507(2010).

    [154] J. Münzberg et al. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 5, 658-665(2018).

    [155] P. Ravindran et al. Active quenching of superconducting nanowire single photon detectors. Opt. Express, 28, 4099-4114(2020).

    [156] S. Miki et al. Photon detection at 1 ns time intervals using 16-element SNSPD array with SFQ multiplexer. Opt. Lett., 46, 6015-6018(2021).

    [157] Finland’s first 5-qubit quantum computer is now operational.

    [158] V. Billault et al. Free space optical communication receiver based on a spatial demultiplexer and a photonic integrated coherent combining circuit. Opt. Express, 29, 33134-33143(2021).

    [159] A. Gritsch et al. Narrow optical transitions in erbium-implanted silicon waveguides. Phys. Rev. X, 12, 041009(2022).

    Matteo Cherchi, Arijit Bera, Antti Kemppinen, Jaani Nissilä, Kirsi Tappura, Marco Caputo, Lauri Lehtimäki, Janne Lehtinen, Joonas Govenius, Tomi Hassinen, Mika Prunnila, Timo Aalto. Supporting quantum technologies with an ultralow-loss silicon photonics platform[J]. Advanced Photonics Nexus, 2023, 2(2): 024002
    Download Citation