• Acta Optica Sinica
  • Vol. 41, Issue 17, 1730003 (2021)
Sheng Rong1, Hongshuang Liu1, Ying Zhong2, and Haitao Liu1、*
Author Affiliations
  • 1Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 2State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/AOS202141.1730003 Cite this Article Set citation alerts
    Sheng Rong, Hongshuang Liu, Ying Zhong, Haitao Liu. Enhancement of Raman Spectra Based on Optical Trapping of Gold Nanocubes[J]. Acta Optica Sinica, 2021, 41(17): 1730003 Copy Citation Text show less
    References

    [1] Chen J, Ding W H, Luo Z X et al. Probing single molecules and molecular aggregates: Raman spectroscopic advances[J]. Journal of Raman Spectroscopy, 47, 623-635(2016).

    [2] Zhang R, Zhang Y, Dong Z C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 498, 82-86(2013).

    [3] Yang F, Wen P, Zhang Z Q et al. Fabrication of flexible surface-enhanced Raman spectroscopy chip[J]. Chinese Journal of Lasers, 48, 0113001(2021).

    [4] Qian X M, Peng X H, Ansari D O et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology, 26, 83-90(2008).

    [5] Zhang B H, Guo L, Yao L et al. Rapid histological imaging using stimulated Raman scattering microscopy[J]. Chinese Journal of Lasers, 47, 0207018(2020).

    [6] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1-20(1977).

    [7] Gurav D D, Jia Y, Ye J et al. Design of plasmonic nanomaterials for diagnostic spectrometry[J]. Nanoscale Advances, 1, 459-469(2019).

    [8] Ding S Y, You E M, Tian Z Q et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 46, 4042-4076(2017).

    [9] Kumar G V P. Plasmonic nano-architectures for surface enhanced Raman scattering: a review[J]. Journal of Nanophotonics, 6, 064503(2012).

    [10] Xu H X, Bjerneld E J, Käll M et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters, 83, 4357-4360(1999).

    [11] Roxworthy B J, Ko K D, Kumar A et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting[J]. Nano Letters, 12, 796-801(2012).

    [12] Li W Y. Camargo P H C, Lu X M, et al. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano Letters, 9, 485-490(2009).

    [13] Nam J M, Oh J W, Lee H et al. Plasmonic nanogap-enhanced Raman scattering with nanoparticles[J]. Accounts of Chemical Research, 49, 2746-2755(2016).

    [14] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [15] Ashkin A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules[J]. IEEE Journalon Selected Topics in Quantum Electronics, 6, 841-856(2000).

    [16] Han X, Chen X L, Xiong W et al. Vaccum optical tweezers system and its research progress in precision measurement[J]. Chinese Journal of Lasers, 48, 0401011(2021).

    [17] Liang Y S, Yao B L, Lei M. Applications of holographic optical tweezers in biological research[J]. Chinese Journal of Lasers, 47, 0207020(2020).

    [18] Gao D L, Ding W Q, Nieto-Vesperinas M et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[J]. Light: Science & Applications, 6, e17039(2017).

    [19] Fazio B. D’Andrea C, Foti A, et al. SERS detection of biomolecules at physiological pH via aggregation of gold nanorods mediated by optical forces and plasmonic heating[J]. Scientific Reports, 6, 26952(2016).

    [20] Hong S, Shim O, Kwon H et al. Autoenhanced Raman spectroscopy via plasmonic trapping for molecular sensing[J]. Analytical Chemistry, 88, 7633-7638(2016).

    [21] Kang Z W, Chen J J, Ho H P. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands[J]. Nanoscale, 8, 10266-10272(2016).

    [22] Zhang Y Q, Shen J F, Xie Z W et al. Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering[J]. Nanoscale, 9, 10694-10700(2017).

    [23] Ralevi U, Isi G, Anicijevi D V et al. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters[J]. Applied Surface Science, 434, 540-548(2018).

    [24] Foti A. D’Andrea C, Villari V, et al. Optical aggregation of gold nanoparticles for SERS detection of proteins and toxins in liquid environment: towards ultrasensitive and selective detection[J]. Materials, 11, 440(2018).

    [25] Tong L M, Righini M, Gonzalez M U et al. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis[J]. Lab on a Chip, 9, 193-195(2009).

    [26] Donato M G, Rajamanickam V P, Foti A et al. Optical force decoration of 3D microstructures with plasmonic particles[J]. Optics Letters, 43, 5170-5173(2018).

    [27] Svedberg F, Li Z P, Xu H X et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation[J]. Nano Letters, 6, 2639-2641(2006).

    [28] McLellan J M, Li Z Y, Siekkinen A R et al. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization[J]. Nano Letters, 7, 1013-1017(2007).

    [29] Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London Series, 253, 358-379(1959).

    [30] Liu H, Yan Y, Yi D et al. Theories for the design of a hybrid refractive-diffractive superresolution lens with high numerical aperture[J]. Journal of the Optical Society of America A, 20, 913-924(2003).

    [31] Palik E D. Introductory remarks[M]. //Handbook of optical constants of solids. Amsterdam: Elsevier, 1, 3-9(1997).

    [32] Novotny L, Hecht B, Keller O[M]. Principle of nano-optics(2006).

    [33] Barnett S M. Resolution of the Abraham-minkowski dilemma[J]. Physical Review Letters, 104, 070401(2010).

    [34] Zaman M A, Padhy P, Hesselink L. Near-field optical trapping in a non-conservative force field[J]. Scientific Reports, 9, 649(2019).

    [35] Donner J S, Baffou G. McCloskey D, et al. Plasmon-assisted optofluidics[J]. ACS Nano, 5, 5457-5462(2011).

    [36] García-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering[J]. Physical Review Letters, 77, 1163-1166(1996).

    Sheng Rong, Hongshuang Liu, Ying Zhong, Haitao Liu. Enhancement of Raman Spectra Based on Optical Trapping of Gold Nanocubes[J]. Acta Optica Sinica, 2021, 41(17): 1730003
    Download Citation