• Photonics Research
  • Vol. 12, Issue 3, 474 (2024)
Chang Qiao1、2、†, Haoyu Chen3、4、†, Run Wang1、†, Tao Jiang3、4, Yuwang Wang5、6, and Dong Li3、4、*
Author Affiliations
  • 1Department of Automation, Tsinghua University, Beijing 100084, China
  • 2Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
  • 3National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 4College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
  • 6e-mail: wang-yuwang@mail.tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.506778 Cite this Article Set citation alerts
    Chang Qiao, Haoyu Chen, Run Wang, Tao Jiang, Yuwang Wang, Dong Li. Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging[J]. Photonics Research, 2024, 12(3): 474 Copy Citation Text show less
    References

    [1] N. Ji. Adaptive optical fluorescence microscopy. Nat. Methods, 14, 374-380(2017).

    [2] Q. Zhang, Q. Hu, C. Berlage. Adaptive optics for optical microscopy [Invited]. Biomed. Opt. Express, 14, 1732-1756(2023).

    [3] K. M. Hampson, R. Turcotte, D. T. Miller. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers, 1, 68(2021).

    [4] D. Saha, U. Schmidt, Q. Zhang. Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express, 28, 29044-29053(2020).

    [5] B. P. Cumming, M. Gu. Direct determination of aberration functions in microscopy by an artificial neural network. Opt. Express, 28, 14511-14521(2020).

    [6] P. Zhang, S. Liu, A. Chaurasia. Analyzing complex single-molecule emission patterns with deep learning. Nat. Methods, 15, 913-916(2018).

    [7] J. Wu, Y. Guo, C. Deng. An integrated imaging sensor for aberration-corrected 3D photography. Nature, 612, 62-71(2022).

    [8] J. Wu, Z. Lu, D. Jiang. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 184, 3318-3332(2021).

    [9] C. Qiao, D. Li, Y. Guo. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods, 18, 194-202(2021).

    [10] Y. Zhang, K. P. Li, K. Li. Image super-resolution using very deep residual channel attention networks. Proceedings of the European Conference on Computer Vision (ECCV), 294-310(2018).

    [11] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 1-8(2015).

    [12] J. Gu, H. Lu, W. Zuo. Blind super-resolution with iterative kernel correction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1604-1613(2019).

    [13] D. Hendrycks, K. Gimpel. Gaussian error linear units (GELUs). arXiv(2016).

    [14] J. Caballero, C. Ledig, A. Aitken. Real-time video super-resolution with spatio-temporal networks and motion compensation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4778-4787(2017).

    [15] S. Bell-Kligler, A. Shocher, M. Irani. Blind super-resolution kernel estimation using an internal-GaN. arXiv(2019).

    [16] A. Liu, Y. Liu, J. Gu. Blind image super-resolution: a survey and beyond. arXiv(2021).

    [17] J. Liang, G. Sun, K. Zhang. Mutual affine network for spatially variant kernel estimation in blind image super-resolution. Proceedings of the IEEE/CVF International Conference on Computer Vision, 4096-4105(2021).

    [18] A. Shocher, S. Bagon, P. Isola. InGaN: capturing and remapping the ‘DNA’ of a natural image. arXiv(2018).

    [19] D. Ren, K. Zhang, Q. Wang. Neural blind deconvolution using deep priors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3341-3350(2020).

    [20] J. Liang, K. Zhang, S. Gu. Flow-based kernel prior with application to blind super-resolution. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10601-10610(2021).

    [21] L. B. Lucy. An iterative technique for the rectification of observed distributions. Astron. J., 79, 745(1974).

    [22] W. H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62, 55-59(1972).

    [23] Z. Liu, Y. Lin, Y. Cao. Swin transformer: hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012-10022(2021).

    [24] https://github.com/HypnosRin/SFE-Net. https://github.com/HypnosRin/SFE-Net

    Chang Qiao, Haoyu Chen, Run Wang, Tao Jiang, Yuwang Wang, Dong Li. Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging[J]. Photonics Research, 2024, 12(3): 474
    Download Citation