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Optical aberrations degrade the performance of fluorescence microscopy. Conventional adaptive optics (AO)
leverages specific devices, such as the Shack–Hartmann wavefront sensor and deformable mirror, to measure
and correct optical aberrations. However, conventional AO requires either additional hardware or a more com-
plicated imaging procedure, resulting in higher cost or a lower acquisition speed. In this study, we proposed a
novel space-frequency encoding network (SFE-Net) that can directly estimate the aberrated point spread func-
tions (PSFs) from biological images, enabling fast optical aberration estimation with high accuracy without en-
gaging extra optics and image acquisition. We showed that with the estimated PSFs, the optical aberration can be
computationally removed by the deconvolution algorithm. Furthermore, to fully exploit the benefits of SFE-Net,
we incorporated the estimated PSF with neural network architecture design to devise an aberration-aware deep-
learning super-resolution model, dubbed SFT-DFCAN. We demonstrated that the combination of SFE-Net and
SFT-DFCAN enables instant digital AO and optical aberration-aware super-resolution reconstruction for live-cell
imaging. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.506778

1. INTRODUCTION

Fluorescence microscopy has been widely used as a powerful
tool for visualizing various biological structures and biopro-
cesses in fixed or live specimens. Ideal optical imaging relies
upon the high-quality focusing of excitation light and accurate
detection of the emission light from the fluorescent sample.
However, both the optics in the microscope and the biological
samples being investigated can introduce aberrations, thus
causing degradation in resolution, loss of fluorescent photons,
and deterioration of signal-to-background ratio, etc. For exam-
ple, the optics manufacture deficiency or misalignment of
optical elements in the imaging system may cause certain aber-
rations such as spherical and coma aberration, and the refractive
index inhomogeneities of biological specimens will bring about
more complicated aberrations. Moreover, microscopes with
high numerical apertures (NAs), especially the super-resolution
microscopy, are more sensitive to aberrations, because the

high-NA objectives are more susceptible to high-order aberra-
tions [1]. To detect and correct these optical aberrations, a large
number of adaptive optics (AO) technologies have been ex-
plored in the last two decades [2].

The implementation of AO generally involves two main
components: aberration detection and aberration correction.
To measure optics- or sample-induced aberrations, both direct
and indirect wavefront sensing methods were developed [1–3].
Direct wavefront sensing methods utilize a dedicated wavefront
sensor, mostly the Shack–Hartmann sensor, along with an
additional light path for aberration detection. In contrast, the
indirect wavefront sensing methods characterize aberrations
without specific wavefront sensors but determine them com-
putationally from repetitive acquisitions with either zonal or
modal approaches [2]. In recent years, deep neural networks
have been applied to directly estimate aberrations from the
optical images of point sources [4–6]. However, these methods
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are limited to the scenarios where there are guiding stars or
single-molecule emitters in the biological sample. Once the
aberrations are known, wavefront corrective devices, mostly the
spatial light modulators and deformable mirrors, are utilized to
compensate for the measured aberrations by reshaping the
wavefronts [1–3]. In consequence, conventional AO methods
have to rely on additional optical devices or iterative acquisi-
tions to measure and then eliminate the optical aberration,
which complicates the optics, imaging procedures, and compu-
tation. To overcome these limitations, the development of
digital adaptive optics has allowed for the computational detec-
tion and correction of optical aberrations for light-field micros-
copy (LFM) [7,8] in an offline manner, which, however, is only
applicable for the certain imaging modality, i.e., LFM.

In optical imaging systems, the image quality as well as the
aberrations is typically characterized by their point spread func-
tions (PSFs), which are implicitly encoded in any specimen
patch of the microscopic image. Inspired by the understanding,
we devised a space-frequency encoding network (SFE-Net),
which is trained to directly extract the PSF with aberrations
from a single microscopic image. Our results show that the pro-
posed SFE-Net is able to estimate optical aberrations composed
of up to 18 Zernike polynomials with high accuracy directly
from images of various biological specimens, and the corre-
sponding aberrations can be substantially eliminated via the
deconvolution algorithm resorting to the estimated PSF. To
further enhance the resolution while removing the optical aber-
rations for biological images, we integrated the PSF priors into
the deep-learning super-resolution (DLSR) neural network
architecture design and devised the spatial feature transform-
guided (SFT) deep Fourier channel attention network (SFT-
DFCAN). We showed that by leveraging PSF information
estimated from SFE-Net, the SFT-DFCAN can be trained
to digitally eliminate the aberrations and super-resolve the fine
structures of specimens directly from the aberrated images,
which substantially outperforms its backbone DFCAN archi-
tecture [9]. Finally, we demonstrated that the SFE-Net and
SFT-DFCAN enable fast, accurate aberration estimation and
correction, as well as computational super-resolution, in long-
term live-cell imaging experiments.

2. METHODS

A. Training Data Generation
The training data for SFE-Net, SFT-DFCAN, and other deep-
learning models compared in this study was generated in a
semi-synthetic manner using our previously published dataset
BioSR [9]. Specifically, we utilized the ground-truth structured
illumination microscopy (GT-SIM) images from BioSR as
the biological fluorescence specimens. These images were in-
tentionally degraded according to the optical imaging model,
which can be expressed as follows:

I � N Poisson�S � PSFZernike� � G�0, σ2�, (1)

where I represents the aberrated wide-field (WF) image cap-
tured by the optical imaging system; S denotes the biological
specimens, i.e., the GT-SIM images; � signifies the convolu-
tion operator; N Poisson�·� represents the Poisson recorruption;
G�0, σ2� denotes the Gaussian white noise with a mean of zero

and a variance of σ2; and PSFZernike refers to the aberrated point
spread function, whose pupil function is constructed by
a weighted summation of Zernike polynomials 4–18
(Wyant ordering). These functions can be mathematically for-
mulated as follows:

PSFZernike � F −1

�
A
�X18

n�4

anZ n

��
, (2)

where Zn and an represent Zernike polynomials and the coef-
ficient of order n, respectively. A�·� denotes a circular apodiza-
tion function, where the radius is determined by the emission
wavelength and detection numerical aperture (NA). F −1f·g
denotes the inverse fast Fourier transformation operator.

The coefficient an for each order was randomly sampled
from a normal distribution with a zero mean and a standard
deviation of 0.125. And we set an upper and lower bound
of �−1, 1� for all sampled an to avoid extremely high or low
values that may destabilize the training process. Since an obeys
a normal distributionN �0, 0.125� with a loose bound, the root
mean square (RMS) of the generated aberration approximately
follows a rescaled chi distribution, which can be formulated as

RMS �
ffiffiffiffiffiffiffiffiffiffiffiffiX18
n�4

a2n

vuut ∕λ, (3)

where λ is the emission wavelength. As a result, the total RMS
range of the training and testing datasets is [0, 7.38λ].

During the training procedure, the aberrated PSF images
PSFZernike were used as targets for PSF estimation network
models such as SFE-Net, and the GT-SIM images S were used
as targets for single image super-resolution (SISR) network
models such as SFT-DFCAN.

B. Network Architecture
The architecture of SFE-Net, as shown in Fig. 1(a), consists of a
dual-branch encoder and a U-net-based decoder. The encoder
network is constituted with two parallel branches: the spatial
branch (SB) and frequential branch (FB), which extract deep
features in the spatial and frequential domains, respectively.
In both branches, a modified residual channel attention net-
work [10] with 4 residual groups × 4 residual channel attention
blocks is employed as their backbone network architecture
[Fig. 1(b)]. In contrast with the SB, the FB begins with a fast
Fourier transform layer followed by a modulus operator and a
logarithm operator in sequence, so as to encode the image fea-
ture into the Fourier domain. The output feature maps of the
SB and FB are concatenated along the channel and then fed
into the U-net-based decoder.

The decoder mainly consists of two parts: a U-net feature
extractor and a downscale module. We adopt a relatively deep
U-net model [11] that begins with a double convolutional
block [Fig. 1(c)] followed by five downscale blocks [Fig. 1(d)]
and five upscale blocks [Fig. 1(e)] with five skip connections
bridging the features of the same scale. In each downscale
block, a max pooling layer and a double convolutional block
are employed to downscale and extract features. The upscale
blocks use the pixel shuffle layer to upscale the feature channels.
The output of the U-net is then passed to the downscale
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module, which consists of two 2× down shuffle layers and four
Conv-ReLU blocks. In each Conv-ReLU block, the stride
parameter of convolutional layers is set to 2, enabling the
downscale module to transform the input feature maps from
132 × 132 pixels into PSF images of 33 × 33 pixels.

The overall architecture of SFT-DFCAN is depicted in
Fig. 2(a), which is modified from our previously proposed
state-of-the-art DLSR model DFCAN [9], which is trained
to directly transform a WF image to its SR counterpart.
Here, to deliver PSF and aberration information to the image

Fig. 1. (a)–(e) Network architecture of space-frequency encoding network. (a) Network architecture of the SFE-Net, (b) residual group, (c) double
convolutional block, (d) downscale block, and (e) upscale block.

Fig. 2. (a)–(c) Network architecture of spatial feature transform-guided deep Fourier channel attention network (SFT-DFCAN). (a) Network
architecture of the SFT-DFCAN, (b) spatial feature transform-guided Fourier channel attention block (FCAB), and (c) Fourier channel attention
(FCA) layer.
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SR processing, inspired by the SFTMD model [12], we up-
dated the original Fourier channel attention block (FCAB) into
the spatial feature transform-guided FCAB (SFT-FCAB),
which could leverage the embedded PSF information to adap-
tively rescale the spatial features in SFT-FCAB. Specifically, we
employed the principal component analysis to project the PSF
onto a linear space of dimension b. This projected PSF is then
stretched into a PSF embedding of size b ×H ×W , which
serves as the input for every SFT-FCAB. In each SFT-FCAB,
the PSF embedding is combined with spatial feature maps of
the biological structure through two Conv-ReLU blocks to
scale and shift the input feature maps. Subsequently an FCA
layer [Fig. 2(c)] is implemented to perform deep feature extrac-
tion and aggregation. Finally, the reconstructed SR image is
generated by an up-sampling module, which sequentially con-
sists of a Conv-GeLU block [13], a pixel shuffle layer [14], and
a final convolutional layer.

C. Network Training and Data Processing
For training of SFE-Net, we randomly generated pairs of aber-
rated WF images (132 × 132 pixels) and theirs corresponding
PSF (33 × 33 pixels) during each iteration following Eqs. (1)
and (2) with ∼200 original GT-SIM images of multiple bio-
logical specimens, including the hollow clathrin-coated pits
(CCPs), the endoplasmic reticulum (ER), and the crisscross-
ing microtubules (MTs), so as to endow a well generalization
capability of the trained model. The overall data augmentation
workflow and the training process of SFE-Net are shown in
Fig. 3. For SISR models such as SFT-DFCAN, we randomly
generated triplets of aberrated WF images (132 × 132 pixels),
ground-truth PSFs (33 × 33 pixels), and corresponding GT-
SIM images (264 × 264 pixels) during each iteration as the
training dataset. The objective function of both SFE-Net and
SISR models is defined as the mean square error, which quan-
tifies the difference between the network outputs and target
images.

The training and inference were performed on a computer
workstation equipped with an Intel Xeon(R) Gold 6134 CPU
at 3.20 GHz and an NVIDIA RTX 3090 graphic processing
card with Python v.3.6 and PyTorch 1.12. During the training
process, we used the Adam optimizer with an initial learning

of 5 × 10−5. The learning rate for SFT-Net was decayed by a
factor of 0.5 after every ∼10,000 minibatch iterations, while
the learning rate of SFT-DFCAN followed a cosine annealing
schedule, restarting at every 12,500 minibatch iterations. We
adopted a batch size of 4 and 8 for SFE-Net and SFT-DFCAN,
respectively. Typically, the total training iterations of SFE-Net
and SFT-DFCAN are 150,000 and 500,000, which take
about 16 h and 30 h with the RTX 3090 GPU, respectively.
In the inference phase, SFE-Net typically takes less than 1.5 s
(30 ms for a single image patch) to generate a PSF matrix
(7 × 7 × 33 × 33) by segmenting the input image (512 × 512)
into several patches to capture the spatial variation of optical
aberrations. By taking the WF image and estimated PSF as in-
puts, a well-trained SFT-DFCAN model could reconstruct an
aberration-free SR image of 1024 × 1024 pixels within 1 s.

3. RESULTS

A. Optical Aberration Estimation via SFE-Net
The PSF encodes substantial and intrinsic information, encom-
passing optical aberrations and resolution, for both natural im-
ages and microscopic images. In recent years, several methods
have been developed to estimate the blur kernel of the image
capture process for natural images [12,15–17]. However, there
have been limited advancements in blind estimation techniques
for the microscopic image PSF. The reasons are twofold. First,
due to the elaborate optical system and sample scattering, the
optical aberrations encountered in biological imaging are dra-
matically heavier than those in commercial camera-based pho-
tography. Second, estimating the aberrated PSF directly from
biological images is essentially an ill-posed problem, rendering
it infeasible in intuition. Nonetheless, the image-based estima-
tion of PSF and optical aberration holds substantial benefits
for biological imaging, which eliminates the need for a wave-
front sensor in the AO system, while facilitating digital aberra-
tion correction and aberration-aware image super-resolution
reconstruction.

In order to address the issues above, we started with explor-
ing several representative supervised or unsupervised kernel es-
timation algorithms to estimate the kernel, i.e., the aberrated
PSF, from biological images. The algorithms included the

Fig. 3. Schematic of the data augmentation and training process of SFE-Net. Scale bar, 2 μm (original image), 1 μm (cropped regions).
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unsupervised kernel generative adversarial network (KernelGAN)
[15,18], iterative kernel correction (IKC) [12], and supervised
mutual affine network (MANet) for spatially variant kernel esti-
mation [17]. To evaluate the performance of these methods, we
generated four semi-simulated datasets with aberrated PSF follow-
ing the procedure outlined in Section 2.A, each constituted by
different orders of Zernike polynomials (4–6, 4–8, 4–13, and
4–18). The increasing order range reflects the increasing severity
of the ill-posedness in the PSF estimation task. The generated
datasets were then utilized to evaluate the performance of existing
kernel estimation methods. The results, depicted in Fig. 4(a), re-
vealed that the KernelGAN method only generated narrowed
anisotropic kernels that significantly deviated from the GT PSF
in terms of the shape and size. This discrepancy may arise from
the multiple kernel constraints in the algorithm, despite the fact
that we have made great efforts to optimize the weighting scalar of
each regularization term. In contrast to KernelGAN, both the

IKC and MANet methods consistently produce Gaussian-shaped
kernels, regardless of the complexity of the training dataset or bio-
logical structures. This indicates that these two methods fail to
resolve the optical aberrations from the corresponding WF im-
ages. In particular, even when we modified the MANet to focus
on estimating a spatially consistent kernel, it still could not gen-
erate the correct PSF with notable aberrations, possibly due to its
relatively simple network architecture.

To further enhance the feature extraction and representation
capability of neural network models in the task of PSF estima-
tion, we devised a novel neural network architecture named
SFE-Net. SFE-Net leverages both the spatial features and fre-
quential characteristics of the WF image to estimate the aber-
rated PSF with high accuracy. As shown in Fig. 4, the SFE-Net
is trained in a supervised manner to directly map biological WF
images to their corresponding aberrated PSFs. Interestingly,
before adopting this supervised training scheme, we have gone

Fig. 4. Optical aberration estimation via SFE-Net. (a) Representative aberrated PSFs estimated by KernelGAN, IKC, MANet, and SFE-Net from
WF images of CCPs, ER, and MTs. Four groups of datasets with escalating complexity of aberration were generated, corresponding to Zernike
polynomials of orders 4–6, 4–8, 4–13, and 4–18. The top and bottom rows show the input WF images and GT PSF images for reference. Scale bar,
1 μm. (b) Statistical comparisons (n � 30) of KernelGAN, IKC, MANet, and SFE-Net in terms of peak signal-to-noise ratio (PSNR) on different
training and testing datasets. Center line, medians; limits, 75% and 25%; whiskers, the larger value between the largest data point and the
75th percentiles plus 1.5× the interquartile range (IQR), and the smaller value between the smallest data point and the 25th percentiles minus
1.5× the IQR; outliers, data points larger than the upper whisker or smaller than the lower whisker. The same notations for box plots are used in
Figs. 6(e) and 7(b).
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through a series of physical model-based PSF estimation ap-
proaches, such as using untrained network [19], or modi-
fied flow-based kernel priors [20]. However, we found that
although straightforward, the data-driven supervised mapping
strategy with SFE-Net remarkably outperformed other concep-
tually more complex ideas.

As is shown in Fig. 4(a), KernelGAN, IKC, and MANet fail
to extract the optical aberration from WF images, even when
the aberrated PSF is relatively simple, i.e., generated with 4–6
Zernike polynomials. In contrast, our SFE-Net accurately gen-
erates complex aberrated PSF constituted of up to 18 orders of
Zernike polynomials, with an average peak signal-to-noise ratio
(PSNR) higher than 30 dB [Fig. 4(b)]. Furthermore, we per-
formed an ablation study on the frequential branch of SFE-Net
to validate the gain of incorporating frequential information in
the feature extraction process of the PSF estimation network.
Specifically, we trained three versions of the SFE-Net on the
same training dataset: a standard SFE-Net, a modified version
without the frequential branch, and another modified version
without the fast Fourier transform (FFT) layer in the frequen-
tial branch. The training loss and validation PSNR curves for
these three models shown in Fig. 5 demonstrate that the inclu-
sion of the frequential branch, especially the FFT layer, effec-
tively accelerates network convergence and contributes to an
improved PSF estimation performance by 3.2 dB in PSNR.

B. Blind Deconvolution with Accurate PSF
Estimation
Integrated with deconvolution algorithms, the accurate PSF es-
timation through SFE-Net provides a straightforward yet effi-
cient solution for numerically compensating optical aberrations
and improving spatial resolution in an unsupervised manner.
To systematically evaluate the impact of the PSF on deconvo-
lution algorithms during the processing of images with opti-
cal aberrations, we processed WF images of CCPs, ER, and
MTs with Richardson–Lucy (RL) deconvolution [21,22] using
an ideal Gaussian PSF with theoretically accurate full width
at half-maximum (FWHM), as well as PSFs estimated by

KernelGAN, IKC, MANet, and SFE-Net [Figs. 6(a)–6(c)].
Our findings demonstrate that RL deconvolution with accurate
PSF, i.e., GT PSFs and PSFs estimated by SFE-Net, substan-
tially removes the artifacts induced by aberrations, such as an
anomalous distortion in CCP images and ringing artifacts in
ER and MT images. Moreover, it enhances both the resolution
and contrast for all biological structures. Conversely, when pro-
vided with an incorrect PSF estimated by other methods, the
RL deconvolution algorithm fails to remove the aberration-
induced artifacts and may even generate anamorphic structures
[indicated by red arrows in Figs. 6(a)–6(c)].

We measured the PSNR between deconvolved images ob-
tained using GT PSFs and those obtained using estimated
PSFs, with deconvolution iterations ranging from 5 to 100,
across various biological structures. Our results demonstrate
that the deconvolved images produced using the PSF estimated
by SFE-Net consistently exhibit a significantly higher PSNR
compared to those generated using PSFs estimated by other
existing methods. This holds true regardless of the number of
deconvolution iterations [Fig. 6(d)] or the specific biological
structure being analyzed [Fig. 6(e)].

C. Aberration-Aware Image Super-Resolution
SISR networks have been developed to instantly enhance the
resolution of biological images in an end-to-end manner, irre-
spective of the image formation model [9]. Recent studies have
shown that incorporating physical prior knowledge, such as the
PSF, can improve the performance of the super-resolution net-
work. Given the remarkable ability of the proposed SFE-Net to
recognize the PSF from low-resolution images, we reasoned
that incorporating the prior knowledge of PSF and optical aber-
rations could benefit the performance of SISR. To validate
this hypothesis, we incorporated the SFT layer [12] with
our previously proposed DFCAN model [9] to devise the
SFT-DFCAN, which leverages both the aberrated PSF infor-
mation and Fourier channel attention mechanism to enhance
the performance of image super-resolution. In particular, in
SFT-DFCAN, the feature maps are affinely transformed

Fig. 5. Progression of training loss and validation PSNR of network model with/without the FFT layer and frequential branch during training
process.
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Fig. 6. (a)–(c) Blind deconvolution with the estimated PSF. Representative deconvolved images of (a) CCPs, (b) ER, and (c) MTs processed with
the RL deconvolution algorithm using ideal Gaussian PSF and PSF estimated by KernelGAN, IKC, MANet, and SFE-Net. The aberrated WF
images (bottom right in the first column), deconvolved images (top left in the first column), and GT PSF images are shown. (d) PSNR curves
calculated between RL deconvolved images using GT PSF and estimated PSFs, with the deconvolution iteration ranging from 5 to 100 (n � 120).
(e) Statistical comparisons of PSNR for testing datasets of CCPs (left), ER (middle), and MTs (right), respectively (n � 30). Scale bar, 1 μm
[(a)–(c)], 0.25 μm [zoom-in regions of (a)–(c)].
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through scaling and shifting operations, which are conditioned
on the estimated PSF and aberration, thereby enabling adaptive
encoding of the PSF information into the neural networks.

Next, we validated the performance of SFT-DFCAN
using the dataset generated following the steps outlined in
Section 2.A. We trained an SFT-DFCAN model using pairs of
low- and high-resolution images along with their corresponding
GT PSFs, and a DFCAN model with low- and high-resolution
image pairs for comparison. Figure 7(a) displays representative
SR images reconstructed using the DFCAN and SFT-DFCAN
models with PSFs generated by SFE-Net and other PSF esti-
mation methods. These results show that while a well-trained
DFCAN model can partially remove the optical aberration and

reconstruct high-frequency information, it struggles to capture
the fine structure of biological specimens, often resulting in the
generation of hallucinated structures [indicated by the red
arrow in the sixth column of Fig. 7(a)]. In contrast, the
SFT-DFCAN model, benefiting from the prior knowledge
of PSF and estimated aberration, has the theoretical capability
to recover biological structures with higher fidelity. Both of
the qualitative and quantitative comparisons [Fig. 7(b)] be-
tween DFCAN and SFE-Net-guided SFT-DFCAN indicate
that the incorporation of PSF and aberration information ratio-
nalizes the training and inference process of DFCAN models
and provides substantial improvements in output fidelity and
resolution.

Fig. 7. Aberration-aware image super-resolution reconstruction with the estimated PSF. (a) Representative SR images reconstructed by DFCAN
and SFT-DFCAN with PSFs obtained from KernelGAN, IKC, MANet, and SFE-Net. Low-resolution images and high-resolution GT images are
provided for reference. The corresponding estimated PSF images are presented in the top right corner of each reconstructed SR image. Scale bar,
1 μm, and 0.5 μm (zoom-in regions). (b) Statistical comparison of PSNR values for the output SR images produced by DFCAN and SFT-DFCAN
with PSFs estimated by KernelGAN, IKC, MANet, and SFE-Net (n � 30).
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Fig. 8. Digital adaptive optics and super-resolution for live-cell imaging. Time-lapse WF images, estimated PSFs by SFE-Net, and corresponding
SR images generated by SFE-Net-facilitated SFT-DFCAN of (a) MTs, (b) CCPs, and (c) ER. During the imaging procedure, the defocus aberration
is manually added on MTs (a) data, while a combination of defocus and coma aberrations and a combination of defocus and spherical aberrations are
applied on CCPs (b) and ER (c) images, respectively. The PSFs estimated by SFE-Net, along with their corresponding profiles and FWHM values,
are displayed in the top right corner of SR images. Scale bar, 1 μm [(a)–(c)], and 0.2 μm [zoom-in regions of (a)–(c)].
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On the other hand, existing PSF estimation methods such as
KernelGAN, IKC, and MANet tend to produce PSF estimates
that deviate significantly from the actual one, thereby mislead-
ing the high-frequency feature extraction and reconstruction in
SFT-DFCAN models. Nevertheless, with the aberrated PSF es-
timated by SFE-Net, the SFT-DFCAN successfully recovers
the fine structures of CCPs, ER, and MTs, exhibiting high
consistency with the high-resolution GT images [Fig. 7(a)].
Additionally, the statistical comparison of the output SR images
generated by different methods [Fig. 7(b)] demonstrates that
SFE-Net-based SFT-DFCAN outperforms other PSF estima-
tion methods-based SFT-DFCAN by a significant margin,
enabling high-quality single-image SR reconstruction from
aberrated WF images.

D. Digital Adaptive Optics and Super-Resolution
for Live-Cell Imaging
For a well-established optical imaging system, the most common
aberrations during live-cell imaging experiments are defocus,
coma, and spherical aberrations. These aberrations are typically
caused by factors such as the drifting of the focusing plane, axial
movement of the samples, tilt of the sample holder, and mis-
match of refractive index between the samples and the cover slip.
Additionally, there may be subtle changes or misalignment in the
imaging system over its service life, which are often unnoticed
and cannot always be corrected in time. To address these inher-
ent optical aberrations in an offline manner, we employed the
well-trained SFE-Net and SFT-DFCAN models to perform dig-
ital adaptive optics and super-resolution reconstruction for time-
lapse experimental WF images.

In our experimental setup, we initially captured 100 con-
secutive frames of a live COS7 cell expressing Ensconsin-
mEmerald using our home-build multi-modality SIM system.
The time interval between each image was set as 0.5 s. To sim-
ulate focus drifting and axial movement, we deliberately intro-
duced a disturbance along the z axis of the motorized sample
stage. As depicted in the upper row of Fig. 8(a), the WF images
of MTs exhibited slightly varying degrees of defocus aberration
at different timepoints. To address this issue, we utilized the
proposed SFE-Net to estimate the PSF for each frame. The es-
timated PSFs were then input into a well-trained SFT-DFCAN
model, enabling the reconstruction of SR images based on real-
time aberrated PSF information. Consequently, despite severe
blurring in the WF images, the SFT-DFCAN equipped with
SFE-Net was capable of clearly recovering the densely inter-
laced MTs [bottom row in Fig. 8(a)].

Subsequently, we proceeded to image a live SUM 159 cell
expressing clathrin-EGFP and intentionally adjusted the tilt an-
gle of the sample holder to introduce some coma aberration,
which is another common type of aberration in ex vivo imaging
when the cover slip is not perpendicular to the optical axis. As is
shown in Fig. 8(b), the SFE-Net successfully estimated the
anisotropic PSFs with coma aberration, facilitated by which
the SFT-DFCAN model removed the optical aberrations and
clearly resolved the hollow structure of CCPs.

Finally, we imaged another live COS7 cell labelled with cal-
nexin-mEmerald for 100 timepoints, with a time interval of 1 s.
Prior to imaging, we deliberately axially offset the sample stage
and adjusted the correction collar of the objective to introduce

both defocus and spherical aberrations manually. As antici-
pated, the SFE-Net reliably estimated the time-varying mixed
defocus and spherical aberrations. This estimation facilitated
the downstream SFT-DFCAN model in resolving the reticular
structure of ER with high resolution and contrast [Fig. 8(c)].
These results illustrate that the proposed SFE-Net has the
capability to recognize spatiotemporally varying optical aberra-
tions without any additional hardware, except for the aberrated
image itself. This capability enables digital aberration compen-
sation and aberration-aware super-resolution reconstruction for
time-lapse live-cell imaging.

4. DISCUSSION

In this paper, we introduced the SFE-Net, a novel method
capable of accurately estimating aberrated PSF directly from
WF images. One key advantage of SFE-Net over conventional
direct wavefront sensing methods is its ability to provide real-
time aberration estimation without requiring any additional
optical hardware. Additionally, unlike existing indirect wave-
front sensing methods that involve time-consuming iterative
acquisition and optimization procedures, SFE-Net can estimate
aberrations from a single frame at a timescale of ∼30 ms. This
makes it suitable for imaging long-term bioprocesses where op-
tical aberrations vary over time and need to be measured and
corrected promptly. By utilizing the PSF generated through
SFE-Net, we can effectively address various aberrations and
improve spatial resolution in biological images using both
the unsupervised RL deconvolution algorithm and the super-
vised SFT-DFCAN model. Notably, our experiments revealed
that by incorporating prior knowledge of aberrated PSF, the
SFT-DFCAN model substantially surpassed its backbone
model DFCAN where PSF information was not incorporated.
Finally, we demonstrated the practical applications of SFE-Net
and the facilitated SFT-DFCAN model in digitally correct-
ing optical aberrations and achieving instant image super-
resolution in time-lapse live-cell imaging experiments.

More potential applications and extension of SFE-Net are
anticipated. First, SFE-Net was trained to estimate aberrated
PSF generated with up to 18 orders of Zernike polynomials.
However, including higher orders of Zernike polynomials could
noticeably degrade the performance of SFE-Net. Upgrading the
backbone network architecture of SFE-Net to state-of-the-art
models such as Swin-Transformer [23] may expand the appli-
cation scope. Second, in this paper we primarily conducted
principal verification of SFE-Net with a semi-simulated dataset.
However, when applying SFE-Net models trained with simu-
lated data to experimental images, there is inevitably a degra-
dation in performance due to the domain shift problem. More
ideally, the training dataset of SFE-Net should be acquired
via an imaging system with wavefront shaping capability and
trained with aberrated images experimentally acquired and cor-
responding ground-truth aberration applied on the wavefront
shaping elements. Third, although we mainly demonstrated the
offline digital AO functionality of SFE-Net, it can also be used
in various hardware-based AO systems in multiple modalities of
microscopes or telescopes by training SFE-Net models based on
the physical parameters of the corresponding imaging system.
In particular, owing to the temporal sensitivity and image
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patch-based estimation scheme of SFE-Net, it can be applied to
measure and correct the drastically varying aberrations both
spatially and temporally in telescope technologies. We hope
that our methods will inspire further developments of next-
generation adaptive optics and super-resolution microscopy.
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