[1] Cai H W, Ye Q, Wang Z Y et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering[J]. Laser & Optoelectronics Progress, 57, 050001(2020).
[2] He Z Y, Liu Q W. Principles and applications of optical fiber distributed acoustic sensors[J]. Laser & Optoelectronics Progress, 58, 1306001(2021).
[3] Wang Z Y, Lu B, Ye L et al. Distributed optical fiber acoustic sensing and its application to seismic wave monitoring[J]. Laser & Optoelectronics Progress, 58, 1306006(2021).
[4] Sun Q Z, Fan C Z, Li H et al. Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry[J]. Geophysical Prospecting for Petroleum, 61, 50-59, 77(2022).
[5] Zhu H H, Liu W, Wang T et al. Distributed acoustic sensing for monitoring linear infrastructures: current status and trends[J]. Sensors, 22, 7550(2022).
[6] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).
[7] Liu S Q, Yu F H, Hong R et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electronic Advances, 5, 200078(2022).
[8] Wu H J, Liu X Y, Rao Y J. Processing and application of fiber optic distributed sensing signal based on Φ-OTDR[J]. Laser & Optoelectronics Progress, 58, 1306003(2021).
[9] Zhang X P, Ding Z W, Hong R et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 41, 0106004(2021).
[10] Juškaitis R, Mamedov A M, Potapov V T et al. Distributed interferometric fiber sensor system[J]. Optics Letters, 17, 1623-1625(1992).
[11] Koo K P, Tveten A B, Dandridge A. Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers[J]. Applied Physics Letters, 41, 616-618(1982).
[12] Song M P, Yin C, Lu Y et al. Four-channel detecting phase demodulation Φ-OTDR based on 3×3 Michelson interferometer[J]. Acta Optica Sinica, 38, 0806001(2018).
[13] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).
[14] Shang Y, Yang Y H, Wang C et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering[J]. Measurement, 79, 222-227(2016).
[15] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).
[16] Liu M H, Wang X, Yu M et al. Clock homologues I/Q demodulation in phase sensitive optical time-domain reflection system[J]. Acta Photonica Sinica, 47, 0806003(2018).
[17] Tu G J, Zhang X P, Zhang Y X et al. The development of an Φ-OTDR system for quantitative vibration measurement[J]. IEEE Photonics Technology Letters, 27, 1349-1352(2015).
[18] Liu H H, Pang F F, Lü L B et al. True phase measurement of distributed vibration sensors based on heterodyne Φ-OTDR[J]. IEEE Photonics Journal, 10, 7101309(2018).
[19] Alekseev A E, Vdovenko V S, Gorshkov B G et al. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal[J]. Laser Physics, 25, 065101(2015).
[20] He X G, Xie S R, Liu F et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics Letters, 42, 442-445(2017).
[21] Hartog A H, Liokumovich L B, Ushakov N A et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic-distributed vibration sensing[J]. Geophysical Prospecting, 66, 192-202(2018).
[22] Hartog A H, Liokumovich L B. Phase sensitive coherent OTDR with multi-frequency interrogation[P].
[23] Zhang J X, Jiang W J, Yu Y et al. Photonics-based simultaneous measurement of distance and velocity using multi-band LFM microwave signals with opposite chirps[J]. Optics Express, 27, 27580-27591(2019).
[24] Xu Z Y, Tang L Z, Zhang H X et al. Simultaneous real-time ranging and velocimetry via a dual-sideband chirped lidar[J]. IEEE Photonics Technology Letters, 29, 2254-2257(2017).
[25] Zhou Y X, Zhao S H, Li X et al. Chirp modulated and frequency mutiplied LFM for communication radar integration[J]. Chinese Journal of Lasers, 49, 0706001(2022).
[26] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).
[27] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).
[28] Wojcik A K. Signal statistics of phase dependent optical time domain reflectometry[D](2006).
[29] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).
[30] Koyamada Y, Imahama M, Kubota K et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 27, 1142-1146(2009).
[31] Zhou L, Wang F, Wang X C et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 27, 1884-1887(2015).
[32] Jacovitti G, Scarano G. Discrete time techniques for time delay estimation[J]. IEEE Transactions on Signal Processing, 41, 525-533(1993).
[33] Ma Z, Jiang J F, Wang S A et al. High performance distributed acoustic sensor based on digital LFM pulse coherent-optical time domain reflectometer for intrapulse event[J]. Applied Physics Express, 13, 012016(2020).
[34] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).
[35] Liehr S, Münzenberger S, Krebber K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing[J]. Optics Express, 26, 10573-10588(2018).
[36] Wang Y F, Liu Q W, Li H et al. Distributed fiber-optic dynamic strain sensor based on spectra correlation of Rayleigh backscattering[J]. Chinese Journal of Lasers, 48, 1110002(2021).
[37] Wang S, Fan X Y, Liu Q W et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015).
[38] Lu B, Pan Z Q, Wang Z Y et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 42, 391-394(2017).
[39] Mompó J J, Martín-López S, González-Herráez M et al. Sidelobe apodization in optical pulse compression reflectometry for fiber optic distributed acoustic sensing[J]. Optics Letters, 43, 1499-1502(2018).
[40] Soto M A, Lu X, Martins H F et al. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers[J]. Optics Express, 23, 24923-24936(2015).
[41] Lu X, Soto M A, Thévenaz L. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry[J]. Optics Express, 25, 16059-16071(2017).
[42] Pastor-Graells J, Cortés L R, Fernández-Ruiz M R et al. SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts[J]. Optics Letters, 42, 1728-1731(2017).
[43] Pastor-Graells J, Nuño J, Fernández-Ruiz M R et al. Chirped-pulse phase-sensitive reflectometer assisted by first-order Raman amplification[J]. Journal of Lightwave Technology, 35, 4677-4683(2017).
[44] Fernández-Ruiz M R, Pastor-Graells J, Martins H F et al. Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors[J]. Journal of Lightwave Technology, 36, 979-985(2018).
[45] Bhatta H D, Costa L, Garcia-Ruiz A et al. Dynamic measurements of 1000 microstrains using chirped-pulse phase-sensitive optical time-domain reflectometry[J]. Journal of Lightwave Technology, 37, 4888-4895(2019).
[46] Fernández-Ruiz M R, Costa L, Martins H F. Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology[J]. Sensors, 19, 4368(2019).
[47] Marcon L, Soriano-Amat M, Veronese R et al. Analysis of disturbance-induced “virtual” perturbations in chirped pulse φ-OTDR[J]. IEEE Photonics Technology Letters, 32, 158-161(2020).
[48] Marcon L, Soto M A, Soriano-Amat M et al. High-resolution chirped-pulse φ-OTDR by means of sub-bands processing[J]. Journal of Lightwave Technology, 38, 4142-4149(2020).
[49] Wang S H, Jiang J F, Wang S A et al. GPU-based fast processing for a distributed acoustic sensor using an LFM pulse[J]. Applied Optics, 59, 11098-11103(2020).
[50] Chen D, Liu Q W, Fan X Y et al. Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio[J]. Journal of Lightwave Technology, 35, 2037-2043(2017).
[51] Chen D, Liu Q W, Wang Y F et al. Fiber-optic distributed acoustic sensor based on a chirped pulse and a non-matched filter[J]. Optics Express, 27, 29415-29424(2019).
[52] Steinberg I, Shiloh L, Gabai H et al. Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR[J]. Proceedings of SPIE, 9634, 96341B(2015).
[53] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 37, 4462-4468(2019).
[54] Xiong J, Wang Z N, Wu Y et al. Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing[J]. Journal of Lightwave Technology, 38, 2028-2036(2020).
[55] Zhang J D, Wu H T, Zheng H et al. 80 km fading free phase-sensitive reflectometry based on multi-carrier NLFM pulse without distributed amplification[J]. Journal of Lightwave Technology, 37, 4748-4754(2019).
[56] Liang G H, Jiang J F, Liu K et al. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing[J]. Photonics Research, 8, 1093-1099(2020).
[57] Ip E, Huang Y K, Huang M F et al. DAS over 1, 007-km hybrid link with 10-Tb/s DP-16QAM co-propagation using frequency-diverse chirped pulses[J]. Journal of Lightwave Technology, 41, 1077-1086(2023).
[58] Wu M S, Fan X Y, Liu Q W et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 44, 5969-5972(2019).
[59] Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 25, 8315-8325(2017).
[60] Wang Y F, Liu Q W, Chen D et al. Distributed fiber-optic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement[J]. IEEE Photonics Journal, 11, 6803608(2019).
[61] Wang Z T, Jiang J L, Wang Z N et al. Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate[J]. Optics Express, 28, 38465-38479(2020).
[62] Zhang Z P, Fan X Y, He Z Y. Long-range and wide-band vibration sensing by using phase-sensitive OFDR to interrogate a weak reflector array[J]. Optics Express, 28, 18387-18396(2020).
[63] Fernández-Ruiz M R, Soto M A, Williams E F et al. Distributed acoustic sensing for seismic activity monitoring[J]. APL Photonics, 5, 030901(2020).
[64] Lin S T, Wang Z N, Xiong J et al. Progresses of anti-interference-fading technologies for Rayleigh-scattering-based optical fiber sensing[J]. Laser & Optoelectronics Progress, 58, 10306008(2021).
[65] Ma Z, Jiang J F, Wang S A et al. Double-sideband heterogeneous pulse modulation method for distributed acoustic sensing[J]. Proceedings of SPIE, 10618, 1061807(2018).
[66] Ma Z, Jiang J F, Wang S A et al. Phase drift noise suppression for coherent-OTDR sensing based on heterogeneous dual-sideband LFM pulse[J]. Applied Physics Express, 13, 082002(2020).
[67] Ma Z, Wang Y X, Jiang J F et al. Research on dynamic range expansion method of fiber-optic distributed acoustic sensing[J]. Acta Optica Sinica, 41, 1306008(2021).
[68] Ma Z, Jiang J F, Liu K et al. Virtual-block-array phase analysis for distributed acoustic sensors with a high signal-to-noise ratio reconstruction waveform[J]. Optics Express, 28, 24577-24585(2020).
[69] Xiong J, Wang Z N, Jiang J L et al. High sensitivity and large measurable range distributed acoustic sensing with Rayleigh-enhanced fiber[J]. Optics Letters, 46, 2569-2572(2021).
[70] Xiong J, Wang Z N, Wu Y et al. Long-distance distributed acoustic sensing utilizing negative frequency band[J]. Optics Express, 28, 35844-35856(2020).
[71] Jiang J L, Wang Z N, Wang Z T et al. Continuous chirped-wave phase-sensitive optical time domain reflectometry[J]. Optics Letters, 46, 685-688(2021).
[72] Gou L, Zhang S H, Yu G et al. Optical fiber geophysics: development status and future prospects[J]. Geophysical Prospecting for Petroleum, 61, 15-31(2022).
[73] Jousset P, Reinsch T, Ryberg T et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9, 2509(2018).
[74] Williams E F, Fernández-Ruiz M R, Magalhaes R et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10, 5778(2019).
[75] Walter F, Gräff D, Lindner F et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 11, 2436(2020).
[76] Ajo-Franklin J B, Dou S, Lindsey N J et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 9, 1328(2019).
[77] Mateeva A, Lopez J, Mestayer J et al. Distributed acoustic sensing for reservoir monitoring with VSP[J]. The Leading Edge, 32, 1278-1283(2013).
[78] Miller D, Parker T, Kashikar S et al. Vertical seismic profiling using a fibre-optic cable as a distributed acoustic sensor[C], 803(2012).
[79] Mateeva A, Lopez J, Potters H et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling[J]. Geophysical Prospecting, 62, 679-692(2014).
[80] Byerley G, Monk D, Aaron P et al. Time-lapse seismic monitoring of individual hydraulic frac stages using a downhole DAS array[J]. The Leading Edge, 37, 802-810(2018).
[81] Ivan L C N, Sava P. Multicomponent distributed acoustic sensing: concept and theory[J]. Geophysics, 83, 1-8(2018).
[82] Willis M E, Barfoot D, Ellmauthaler A et al. Quantitative quality of distributed acoustic sensing vertical seismic profile data[J]. The Leading Edge, 35, 605-609(2016).
[83] Li Y P, Li F, Li J G et al. Application of distributed acoustic sensing in borehole seismic exploration[J]. Geophysical Prospecting for Petroleum, 59, 242-249(2020).
[84] Daley T M, Freifeld B M, Ajo-Franklin J et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring[J]. The Leading Edge, 32, 699-706(2013).
[85] Dou S, Lindsey N, Wagner A M et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 7, 11620(2017).
[86] Martin E R, Huot F, Ma Y B et al. A seismic shift in scalable acquisition demands new processing: fiber-optic seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal[J]. IEEE Signal Processing Magazine, 35, 31-40(2018).
[87] Lin R B, Zeng X F, Song Z H et al. Distributed acoustic sensing for imaging shallow structure Ⅱ: ambient noise tomography[J]. Chinese Journal of Geophysics, 63, 1622-1629(2020).
[88] Fang G, Li Y E, Zhao Y M et al. Urban near-surface seismic monitoring using distributed acoustic sensing[J]. Geophysical Research Letters, 47, e2019GL086115(2020).
[89] Wybo J L. Track circuit reliability assessment for preventing railway accidents[J]. Safety Science, 110, 268-275(2018).
[90] Akkerman J, Prahl F[M]. Fiber optic sensing for detecting rock falls on rail rights of way, 1099-1118(2013).
[91] Milne D, Masoudi A, Ferro E et al. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing[J]. Mechanical Systems and Signal Processing, 142, 106769(2020).
[92] Kowarik S, Hussels M T, Chruscicki S et al. Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis[J]. Sensors, 20, 450(2020).
[93] Wang X, Williams E F, Karrenbach M et al. Rose parade seismology: signatures of floats and bands on optical fiber[J]. Seismological Research Letters, 91, 2395-2398(2020).
[94] Wang X, Zhan Z W, Williams E F et al. Ground vibrations recorded by fiber-optic cables reveal traffic response to COVID-19 lockdown measures in Pasadena, California[J]. Communications Earth & Environment, 2, 160(2021).
[95] Catalano E, Coscetta A, Cerri E et al. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment[J]. Applied Optics, 60, 3579-3584(2021).
[96] Li J A, Zhang M J. Physics and applications of Raman distributed optical fiber sensing[J]. Light: Science & Applications, 11, 128(2022).
[97] Madabhushi S S C, Elshafie M Z E B, Haigh S K. Accuracy of distributed optical fiber temperature sensing for use in leak detection of subsea pipelines[J]. Journal of Pipeline Systems Engineering and Practice, 6, 04014014(2015).
[98] Li H J, Zhu H H, Li Y H et al. Experimental study on uplift mechanism of pipeline buried in sand using high-resolution fiber optic strain sensing nerves[J]. Journal of Rock Mechanics and Geotechnical Engineering, 14, 1304-1318(2022).
[99] He T, Liu Y J, Zhang S X et al. High accuracy intrusion pattern recognition using a dual-stage-recognition network for fiber optic distributed sensing system[C], JW1A.119(2021).
[100] Yang Y Y, Zhang H F, Li Y. Long-distance pipeline safety early warning: a distributed optical fiber sensing semi-supervised learning method[J]. IEEE Sensors Journal, 21, 19453-19461(2021).
[101] Wu H J, Chen J P, Liu X R et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 37, 4359-4366(2019).
[102] Tejedor J, Martins H F, Piote D et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. Journal of Lightwave Technology, 34, 4445-4453(2016).