• Acta Optica Sinica
  • Vol. 38, Issue 2, 0212003 (2018)
Ling Wang1、2, Xiuqing Hu1、2、*, Zhaojun Zheng1、2, and Lin Chen1、2
Author Affiliations
  • 1 National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
  • 2 Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China
  • show less
    DOI: 10.3788/AOS201838.0212003 Cite this Article Set citation alerts
    Ling Wang, Xiuqing Hu, Zhaojun Zheng, Lin Chen. Radiometric Calibration Tracking Detection for FY-3A/MERSI by Joint Use of Snow Targets in South and North Poles[J]. Acta Optica Sinica, 2018, 38(2): 0212003 Copy Citation Text show less
    References

    [1] Heidinger A K, Cao C. 107(D23): AAC11[J]. Sullivan J T. Using Moderate Resolution Imaging Spectrometer, MODIS, to calibrate advanced very high resolution radiometer reflectance channels. Journal of Geophysical Research: Atmospheres(2002).

    [3] Chen L, Hu X Q, Xu N et al. The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of FY-3A/MERSI (Medium Resolution Spectral Imager)[J]. Remote Sensing, 5, 6958-6975(2013). http://www.oalib.com/paper/3098269

    [4] Nagaraja R C R, Chen J. Inter-satellite calibration linkages for the visible and near-infared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 spacecraft[J]. International Journal of Remote Sensing, 16, 1931-1942(1995). http://www.tandfonline.com/doi/abs/10.1080/01431169508954530

    [5] Xu N, Wu R H, Hu X Q et al. Integrated method for on-obit wide dynamic vicarious calibration of FY-3C MERSI reflective solar bands[J]. Acta Optica Sinica, 35, 1228001(2015).

    [6] Bhatt R, Doelling D, Wu A et al. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets[J]. Remote Sensing, 6, 2809-2826(2014).

    [7] Helder D L, Basnet B, Morstad D L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites[J]. Canadian Journal of Remote Sensing, 36, 527-539(2010).

    [8] Hu X, Liu J, Sun L et al. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing, 36, 566-582(2010).

    [9] Wu A. Using Dome C for moderate resolution imaging spectroradiometer calibration stability and consistency[J]. Journal of Applied Remote Sensing, 3, 033520(2009).

    [10] Masonis S J, Warren S G. Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow[J]. International Journal of Remote Sensing, 22, 1495-1520(2001).

    [11] Cao C, Ma L, Uprety S et al. Spectral characterization of the Dunhuang calibration/validation site using hyperspectral measuements[C]. SPIE, 7862, 78620J(2010).

    [12] Grenfell T C, Warren S G, Mullen P C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths[J]. Journal of Geophysical Research, 99, 18669-18684(1994).

    [13] Wu A, Xiong X, Cao C. Using BRDF derived from MODIS observations over Dome C to characterize calibration stability and consistency of POS sensors[C]. SPIE, 7456, 745605(2009).

    [14] Uprety S, Cao C. Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites[J]. Remote Sensing of Environment, 166, 106-115(2015).

    [15] Dong C, Yang J, Yang Z et al. An overview of a new Chinese weather satellite FY-3A[J]. Bulletin of the American Meteorological Society, 90, 1531-1544(2009).

    [16] Zhang P, Yang H, Qiu H et al. Quantitative remote sensing from the current Fengyun 3 satellites[J]. Advances in Meteorological Science and Technology, 2, 6-11(2012).

    [17] Hu X, Sun L, Liu J et al. Calibration for the solar reflective bands of Medium Resolution Spectral Imager (MERSI) onboard FY-3A[J]. IEEE Transactions on Geoscience and Remote Sensing, 50, 4915-4928(2012).

    [18] Smith D L, Mutlow C T, Nagaraja R C. Calibration monitoring of the visible and near-infrared channels of the Along-Track Scanning Radiometer-2 by use of stable terrestrial sites[J]. Applied Optics, 41, 515-523(2002).

    [19] Feng S Y, Zhang N, Shen J et al. Method of cloud detection with hyperspectral remote sensing image based on the reflective characteristics[J]. Chinese Optics, 8, 198-204(2015).

    [20] Kim W. Assessment of radiometric degradation of FY-3A MERSI reflective solar bands using TOA reflectance of pseudoinvariant calibration sites[J]. IEEE Geoscience & Remote Sensing Letters, 11, 793-797(2014).

    [21] Helder D L, Basnet B, Morstad D L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites[J]. Canadian Journal of Remote Sensing, 36, 527-539(2010).

    [22] Wiscomb W J, Warren S G. A model for the spectral albedo of snow I: pure snow[J]. Journal of the Atmospheric Sciences, 37, 2712-2733(1980).

    [23] Sun L, Hu X Q, Guo M H et al. Multisite calibration tracking for FY-3A MERSI solar bands[J]. Advances in Meteorological Science and Technology, 3, 84-96(2013).

    [24] Sun L, Guo M H, Xu N et al. On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration[J]. Spectroscopy and Spectral Analysis, 32, 1869-1877(2012).

    CLP Journals

    [1] Yuxia Hu, Nanjing Zhao, Tingting Gan, Jingbo Duan, Deshuo Meng, Jianguo Liu, Wenqing Liu. Normalization of Quantitative Analysis for Bacteria Multi-Wavelength Transmission Spectroscopy in Water[J]. Acta Optica Sinica, 2018, 38(4): 0430001

    Ling Wang, Xiuqing Hu, Zhaojun Zheng, Lin Chen. Radiometric Calibration Tracking Detection for FY-3A/MERSI by Joint Use of Snow Targets in South and North Poles[J]. Acta Optica Sinica, 2018, 38(2): 0212003
    Download Citation