• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0117001 (2024)
Guangming Tao1、2、3、*, Yuqi Zou1、2、3, Chao Liu1、2、3, and Zhihe Ren1、2、3
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 2Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 3State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and;Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • show less
    DOI: 10.3788/LOP232686 Cite this Article Set citation alerts
    Guangming Tao, Yuqi Zou, Chao Liu, Zhihe Ren. Research Progress and Perspective of Clinically Promising Flexible CO2 Laser Delivery Mediums (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0117001 Copy Citation Text show less
    References

    [1] Watt A M, Patkin M, Sinnott M J et al. Scalpel safety in the operative setting: a systematic review[J]. Surgery, 147, 98-106(2010).

    [2] Kuhajda I, Durić D, Koledin M et al. Electric vs. harmonic scalpel in treatment of primary focal hyperhidrosis with thoracoscopic sympathectomy[J]. Annals of Translational Medicine, 3, 211(2015).

    [3] López-Anglada Fernández E, Braña Vigil A. Experience in the use of ultrasonic scalpels in orthopaedic surgery[J]. Revista Española De Cirugía Ortopédica y Traumatología (English Edition), 54, 306-309(2010).

    [4] Stevens R H, Hudson W A. Bronchial obstruction: its diagnosis and treatment[J]. Radiology, 22, 339-349(1934).

    [5] Amini-Nik S, Kraemer D, Cowan M L et al. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery[J]. PLoS One, 5, e13053(2010).

    [6] Goldman L, Hornby P, Meyer R et al. Impact of the laser on dental caries[J]. Nature, 203, 417(1964).

    [7] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 8(2017).

    [8] Tao G M, Ebendorff-Heidepriem H, Stolyarov A M et al. Infrared fibers[J]. Advances in Optics and Photonics, 7, 379-458(2015).

    [9] Xie X M, Xu Q, Hu W Y et al. A brief review of 2 μm laser scalpel[C], 63-67(2020).

    [10] Kienle A, Lilge L, Patterson M S et al. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue[J]. Applied Optics, 35, 2304-2314(1996).

    [11] Li B H, Chen T L, Lin L et al. Recent progress in photodynamic therapy: from fundamental research to clinical applications[J]. Chinese Journal of Lasers, 49, 0507101(2022).

    [12] Gu Y, Liu F G, Wang K et al. A clinic analysis of 1216 cases of port wine stain treated by photodynamic therapy[J]. Chinese Journal of Laser Medicine & Surgery, 10, 86-89(2001).

    [13] Gu Y, Li J H, Chen H et al. A study of photodynamic therapy for port wine stains using chicken comb as a model[J]. Chinese Journal of Laser Medicine & Surgery, 1, 81-84, 122(1992).

    [14] Beggs S, Short J, Rengifo-Pardo M et al. Applications of the excimer laser[J]. Dermatologic Surgery, 41, 1201-1211(2015).

    [15] Belgorod B M, Ediger M N, Weiblinger R P et al. Tangential corneal surface ablation with 193- and 308-nm excimer and 2936-nm erbium-YAG laser irradiation[J]. Archives of Ophthalmology, 110, 533-536(1992).

    [16] Xiao K W, Ma Y C, Luo Z M et al. Network meta-analysis of the treatment safety and efficacy of different energy systems in prostate vaporization[J]. Lasers in Medical Science, 38, 150(2023).

    [17] Zhang R N, Wang D K, Zhuo F L et al. Long-pulse Nd: YAG 1064-nm laser treatment for onychomycosis[J]. Chinese Medical Journal, 125, 3288-3291(2012).

    [18] Carroll L, Humphreys T R. LASER-tissue interactions[J]. Clinics in Dermatology, 24, 2-7(2006).

    [19] Rassweiler J J, Klein J. Re: update on lasers in urology. current assessment on holmium: yttrium-aluminum-garnet (Ho: YAG) laser lithotripter settings and laser fibers[J]. European Urology, 70, 538-539(2016).

    [20] de Boorder T, Brouwers H B, Noordmans H et al. Thulium laser-assisted endoscopic third ventriculostomy: determining safe laser settings using in vitro model and 2 year follow-up results in 106 patients[J]. Lasers in Surgery and Medicine, 50, 629-635(2018).

    [21] Abu-Serriah M, Critchlow H, Whitters C J et al. Removal of partially erupted third molars using an Erbium (Er): YAG laser: a randomised controlled clinical trial[J]. British Journal of Oral and Maxillofacial Surgery, 42, 203-208(2004).

    [22] Polanyi T G, Bredemeier H C, Davis T W,. A CO2 laser for surgical research[J]. Medical and Biological Engineering, 8, 541-548(1970).

    [23] Xiao Y, Zhang T, Ma X B et al. Microenvironment-responsive prodrug-induced pyroptosis boosts cancer immunotherapy[J]. Advanced Science, 8, e2101840(2021).

    [24] Cumberland D C, Moore D J, Tayler D I, Heuck F H W, Donner M W. Laser angioplasty: a review[M]. Radiology today, 4, 25-28(1987).

    [25] Schofield P, Sharples L, Caine N et al. Transmyocardial laser revascularisation in patients with refractory angina: a randomised controlled trial[J]. The Lancet, 353, 519-524(1999).

    [26] Williams G P, Mehta J S, Hjortdal J. Technology: femtosecond laser in keratoplasty[M]. Corneal transplantation, 181-192(2016).

    [27] Forrer M, Frenz M, Romano V et al. Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength[J]. Applied Physics B, 56, 104-112(1993).

    [28] Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chemical Reviews, 103, 577-644(2003).

    [33] Kozodoy R L, Zazanis G A, Schwarz K O et al. A hollow sapphire waveguide for stereotactic intraventricular CO2 laser neurosurgery: a rat model[J]. Lasers in Medical Science, 9, 273-281(1994).

    [34] Scheich M, Ginzkey C, Harnisch W et al. Use of flexible CO2 laser fiber in microsurgery for vestibular schwannoma via the middle cranial fossa approach[J]. European Archives of Oto-Rhino-Laryngology, 269, 1417-1423(2012).

    [35] Whipple T L, Caspari R B, Meyers J F. Arthroscopic laser meniscectomy in a gas medium[J]. Arthroscopy: the Journal of Arthroscopic & Related Surgery, 1, 2-7(1985).

    [36] Moy R L, Bucalo B, Lee M H et al. Skin resurfacing of facial rhytides and scars with the 90-μs short pulse CO2 laser[J]. Dermatologic Surgery, 24, 1390-1396(1998).

    [37] Anderson R R, Parrish J A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation[J]. Science, 220, 524-527(1983).

    [38] Parker S. Introduction, history of lasers and laser light production[J]. British Dental Journal, 202, 21-31(2007).

    [39] Yang G Z, Bellingham J, Dupont P E et al. The grand challenges of Science Robotics[J]. Science Robotics, 3, eaar7650(2018).

    [40] Schmitz A, Thompson A J, Berthet-Rayne P et al. Shape sensing of miniature snake-like robots using optical fibers[C], 947-952(2017).

    [41] Jelı́nková H, Němec M, Šulc J et al. Hollow waveguide delivery systems for laser technological application[J]. Progress in Quantum Electronics, 28, 145-164(2004).

    [42] Merberg G N. Current status of infrared fiber optics for medical laser power delivery[J]. Lasers in Surgery and Medicine, 13, 572-576(1993).

    [43] Conforti C, Vezzoni R, Giuffrida R et al. An overview on the role of CO2 laser in general dermatology[J]. Dermatologic Therapy, 34, e14692(2021).

    [44] Rodrigues L K A, dos Santos M N, Pereira D et al. Carbon dioxide laser in dental caries prevention[J]. Journal of Dentistry, 32, 531-540(2004).

    [45] Crespi R, Barone A, Covani U et al. Effects of CO2 laser treatment on fibroblast attachment to root surfaces. A scanning electron microscopy analysis[J]. Journal of Periodontology, 73, 1308-1312(2002).

    [46] Vaderhobli R M, White J M, Christine L et al. In vitro study of the soft tissue effects of microsecond-pulsed CO2 laser parameters during soft tissue incision and sulcular debridement[J]. Lasers in Surgery and Medicine, 42, 257-263(2010).

    [47] Zhang Y F, Zhang L L, Yang D G et al. Treatment of oral refractory large area mucosal leukoplakia with CO2 laser combined with photodynamic therapy: case report[J]. Photodiagnosis and Photodynamic Therapy, 20, 193-195(2017).

    [48] Osorio J A, Liabres G V T, Miller C A et al. Use of intraoperative CO2 laser for the resection of a ventral intradural extramedullary cervical spinal tumor: 2-dimensional operative video[J]. Operative Neurosurgery, 18, E161(2019).

    [49] Gebhart S C, Jansen E D, Galloway R L. Dynamic, three-dimensional optical tracking of an ablative laser beam[J]. Medical Physics, 32, 209-220(2005).

    [50] Brase C, Schwitulla J, Künzel J et al. First experience with the fiber-enabled CO2 laser in stapes surgery and a comparison with the “one-shot” technique[J]. Otology & Neurotology, 34, 1581-1585(2013).

    [51] Mönnich H, Stein D, Raczkowsky J et al. System for laser osteotomy in surgery with the Kuka lightweight robot-first experimental results[C], 179-182(2009).

    [52] Hongo A, Shiota T, Suzuki M et al. Germanium-coated nickel hollow waveguides for high-powered CO2 laser light transmission[C], WL2(1988).

    [53] Matsuura Y, Hongo A, Miyagi M. Dielectric-coated metallic hollow waveguide for 3-μm Er: YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission[J]. Applied Optics, 29, 2213-2214(1990).

    [54] Croitoru N, Dror J, Gannot I. Characterization of hollow fibers for the transmission of infrared radiation[J]. Applied Optics, 29, 1805-1809(1990).

    [55] Abel T, Hirsch J, Harrington J A. Hollow glass waveguides for broadband infrared transmission[J]. Optics Letters, 19, 1034-1036(1994).

    [56] Harrington J A, Rabii C, Gibson D. Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 948-953(1999).

    [57] Croitoru N I, Inberg A, Oksman M et al. Hollow silica, metal, and plastic waveguides for hard-tissue medical applications[J]. Proceedings of SPIE, 2977, 30-35(1997).

    [58] Hongo A, Sato S, Hattori A et al. AgI-coated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications[J]. Applied Optics, 51, 1-7(2011).

    [60] Artyushenko V, Bocharnikov A, Sakharova T et al. Mid-infrared fiber optics for 1‒18 μm range[J]. Optik & Photonik, 9, 35-39(2014).

    [61] Zhu J Q, Lyu L X, Xu Y et al. Intelligent soft surgical robots for next-generation minimally invasive surgery[J]. Advanced Intelligent Systems, 3, 2100011(2021).

    [62] Livesay J. Intraoperative laser coronary angioplasty[J]. The Thoracic and Cardiovascular Surgeon, 36, 150-154(1988).

    [63] Absten G T. Physics of light and lasers[J]. Obstetrics and Gynecology Clinics of North America, 18, 407-427(1991).

    [64] Li C, Tao Y, Jiang M et al. High-power single-frequency fiber amplifiers: progress and challenge[J]. Chinese Optics Letters, 21, 090002(2023).

    [65] Dretler S P. Laser lithotripsy: a review of 20 years of research and clinical applications[J]. Lasers in Surgery and Medicine, 8, 341-356(1988).

    [66] Auer L M, Holzer P, Ascher P W et al. Endoscopic neurosurgery[J]. Acta Neurochirurgica, 90, 1-14(1988).

    [67] Harrington J A. Infrared alkali halide fibers[J]. Applied Optics, 27, 3097-3101(1988).

    [68] Ballato J, Hawkins T, Foy P et al. Glass-clad single-crystal germanium optical fiber[J]. Optics Express, 17, 8029-8035(2009).

    [69] Sparks J R, He R R, Healy N et al. Zinc selenide optical fibers[J]. Advanced Materials, 23, 1647-1651(2011).

    [70] Matsuura Y, Miyagi M, German A et al. Silver-halide fiber tip as a beam homogenizer for infrared hollow waveguides[J]. Optics Letters, 22, 1308-1310(1997).

    [72] Huang J, Lu Y G, Wu Z N et al. Infrared broadband nonlinear optical limiting technology based on stimulated Brillouin scattering in As2Se3 fiber[J]. Chinese Optics Letters, 20, 031902(2022).

    [73] Sincore A, Cook J, Tan F A et al. Practical limits of power transmission through single-mode chalcogenide fibers[J]. Optical Engineering, 57, 111807(2018).

    [74] Su J X, Dai S X, Jiang L et al. Fabrication and bending strength analysis of low-loss Ge15As25Se40Te20 chalcogenide glass fiber: a potential mid-infrared laser transmission medium[J]. Optical Materials Express, 9, 2859-2869(2019).

    [75] Zou Y Q, Liu C, Ren Z H et al. Flexible and robust low-loss selenium-based multimaterial infrared fibers towards CO2 laser ablation[J]. iScience, 25, 105167(2022).

    [76] Zhang X H, Ma H L, Lucas J. Evaluation of glass fibers from the Ga-Ge-Sb-Se system for infrared applications[J]. Optical Materials, 25, 85-89(2004).

    [77] Wang X G, Jiao K, Si N et al. Extruded seven-core tellurium chalcogenide fiber for mid-infrared[J]. Optical Materials Express, 9, 3863-3870(2019).

    [78] Temelkuran B, Hart S D, Benoit G et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 420, 650-653(2002).

    [79] Chen W L, Liu C, Zou Y Q et al. Flexible omnidirectional reflective film for CO2 laser protection[J]. Chinese Optics Letters, 21, 022201(2023).

    [80] Tate L P,, Elce Y A. Transendoscopic application of CO2 laser irradiation using the OmniGuide fiber[J]. Proceedings of SPIE, 5686, 612-619(2005).

    [81] Barton S E, Gargiulo A R. Robot-assisted laparoscopic myomectomy and adenomyomectomy with a flexible CO2 laser device[J]. Journal of Robotic Surgery, 7, 157-162(2013).

    [84] Agrawal G P[M]. Fiber-Optic Communication Systems(2012).

    [85] Loke G, Yan W, Khudiyev T et al. Recent progress and perspectives of thermally drawn multimaterial fiber electronics[J]. Advanced Materials, 32, 1904911(2020).

    [86] Tao G M, Stolyarov A M, Abouraddy A F. Multimaterial fibers[J]. International Journal of Applied Glass Science, 3, 349-368(2012).

    [87] Bayindir M, Sorin F, Abouraddy A F et al. Metal-insulator-semiconductor optoelectronic fibres[J]. Nature, 431, 826-829(2004).

    [88] Sandt J D, Moudio M, Clark J K et al. Stretchable optomechanical fiber sensors for pressure determination in compressive medical textiles[J]. Advanced Healthcare Materials, 7, 1800293(2018).

    [89] Yildirim A, Vural M, Yaman M et al. Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers[J]. Advanced Materials, 23, 1263-1267(2011).

    [90] Stolyarov A M, Gumennik A, McDaniel W et al. Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers[J]. Optics Express, 20, 1240712415(2012).

    [91] Yang Z Y, Luo T, Jiang S B et al. Single-mode low-loss optical fibers for long-wave infrared transmission[J]. Optics Letters, 35, 3360-3362(2010).

    [92] Tao G M, Shabahang S, Ren H et al. Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission[J]. Optics Letters, 39, 4009-4012(2014).

    [93] Tao G M, Shabahang S, Banaei E H et al. Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers[J]. Optics Letters, 37, 2751-2753(2012).

    [94] Tao G M, Shabahang S, Dai S X et al. Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers[J]. Optical Materials Express, 4, 2143-2149(2014).

    [95] Barbot A, Power M, Seichepine F et al. Liquid seal for compact micropiston actuation at the capillary tip[J]. Science Advances, 6, eaba5660(2020).

    [96] Power M, Thompson A J, Anastasova S et al. Microgrippers: a monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization[J]. Small, 14, 1703964(2018).

    [97] Zhang J, Wang Z, Wang Z X et al. Advanced multi-material optoelectronic fibers: a review[J]. Journal of Lightwave Technology, 39, 3836-3845(2021).

    [98] Shen Y N, Wang Z, Wang Z X et al. Thermally drawn multifunctional fibers: toward the next generation of information technology[J]. InfoMat, 4, e12318(2022).

    [99] Canales A, Jia X T, Froriep U P et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 33, 277-284(2015).

    [100] Yan W, Dong C Q, Xiang Y Z et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics[J]. Materials Today, 35, 168-194(2020).

    [101] Wang Z, Chen M X, Zheng Y et al. Advanced thermally drawn multimaterial fibers: structure-enabled functionalities[J]. Advanced Devices & Instrumentation, 2021, 9676470(2021).

    [102] Park S, Loke G, Fink Y et al. Flexible fiber-based optoelectronics for neural interfaces[J]. Chemical Society Reviews, 48, 1826-1852(2019).

    [103] Rein M, Favrod V D, Hou C et al. Diode fibres for fabric-based optical communications[J]. Nature, 560, 214-218(2018).

    [104] Lu C, Park S, Richner T J et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 3, e1600955(2017).

    [105] Park S, Guo Y Y, Jia X T et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [106] Zhang Y J, Wu X B, Vadlamani R A et al. Submillimeter multifunctional ferromagnetic fiber robots for navigation, sensing, and modulation[J]. Advanced Healthcare Materials, 12, 2300964(2023).

    [107] Kim Y, Parada G A, Liu S D et al. Ferromagnetic soft continuum robots[J]. Science Robotics, 4, eaax7329(2019).

    [108] Leber A, Dong C Q, Laperrousaz S et al. Highly integrated multi-material fibers for soft robotics[J]. Advanced Science, 10, 2204016(2023).

    [109] Wei L, Hou C, Levy E et al. Optoelectronic fibers via selective amplification of In-fiber capillary instabilities[J]. Advanced Materials, 29, 1603033(2017).

    [110] Qu Y P, Nguyen-Dang T, Page A G et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing[J]. Advanced Materials, 30, 1707251(2018).

    Guangming Tao, Yuqi Zou, Chao Liu, Zhihe Ren. Research Progress and Perspective of Clinically Promising Flexible CO2 Laser Delivery Mediums (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0117001
    Download Citation