• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 052601 (2019)
Cuihong Yang1、2、*, Zhen Liu1、2, Jingyun Zhang1、2, and Xiaofei Ma1、2
Author Affiliations
  • 1 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China;
  • 2 School of Physics & Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China;
  • show less
    DOI: 10.3788/LOP56.052601 Cite this Article Set citation alerts
    Cuihong Yang, Zhen Liu, Jingyun Zhang, Xiaofei Ma. Dependence of Optical Absorption Characterization of Graphene on Its Complex Optical Conductivity in Terahertz Regime[J]. Laser & Optoelectronics Progress, 2019, 56(5): 052601 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005). http://pubs.acs.org/servlet/linkout?suffix=ref126/cit126&dbid=8&doi=10.1021%2Facsnano.5b05040&key=16281030

    [2] Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 438, 201-204(2005). http://www.ncbi.nlm.nih.gov/pubmed/16281031

    [3] Morozov S V, Novoselov K S, Katsnelson M I et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008). http://www.tandfonline.com/servlet/linkout?suffix=cit0038&dbid=8&doi=10.1080%2F1536383X.2017.1420647&key=18232798

    [4] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Physics, 2, 620-625(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000014000012000115000001&idtype=cvips&gifs=Yes

    [5] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 76, 153410(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000016000020000085000001&idtype=cvips&gifs=Yes

    [6] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008). http://scitation.aip.org/content/aip/journal/jap/103/6/10.1063/1.2891452

    [7] Falkovsky L A, Varlamov A A. Space-time dispersion of graphene conductivity[J]. The European Physical Journal B, 56, 281-284(2007). http://link.springer.com/article/10.1140/epjb/e2007-00142-3

    [8] Stauber T. Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 78, 085432(2008).

    [9] Ashton M, Paul J, Sinnott S B et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials[J]. Physical Review Letters, 118, 106101(2017). http://www.ncbi.nlm.nih.gov/pubmed/28339265

    [10] Castellanos-Gomez A. Black phosphorus: narrow gap, wide applications[J]. The Journal of Physical Chemistry Letters, 6, 4280-4291(2015). http://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b01686

    [11] Li Z Q, Henriksen E A, Jiang Z et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 4, 532-535(2008). http://www.nature.com/nphys/journal/v4/n7/abs/nphys989.html

    [12] Kuzmenko A B, van Heumen E, Carbone F et al. . Universal optical conductance of graphite[J]. Physical Review Letters, 100, 117401(2008). http://www.ncbi.nlm.nih.gov/pubmed/18517825

    [13] Mak K F, Sfeir M Y, Wu Y et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 101, 196405(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000021000067000001&idtype=cvips&gifs=Yes

    [14] Luo X G, Qiu T, Lu W B et al. Plasmons in graphene: recent progress and applications[J]. Materials Science and Engineering: R: Reports, 74, 351-376(2013). http://www.sciencedirect.com/science/article/pii/S0927796X13000879

    [15] Xiao B G, Qin K, Xiao S S et al. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime[J]. Optics Communications, 355, 602-606(2015). http://www.sciencedirect.com/science/article/pii/S0030401815006264

    [16] Thongrattanasiri S. Koppens F H L, García de Abajo F J. Complete optical absorption in periodically patterned graphene[J]. Physical Review Letters, 108, 047401(2012).

    [17] Fang Z Y, Wang Y M, Schlather A E et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 14, 299-304(2014). http://europepmc.org/abstract/med/24320874

    [18] Yan H G, Low T, Zhu W J et al. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 7, 394-399(2013). http://www.nature.com/nphoton/journal/v7/n5/abs/nphoton.2013.57.html

    [19] Bludov Y V, Vasilevskiy M I. Peres N M R. Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene[J]. Europhysics Letters, 92, 68001(2010).

    [20] Otsuji T, Watanabe T. Tombet S A B, et al. Emission and detection of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene[J]. IEEE Transactions on Terahertz Science and Technology, 3, 63-71(2013). http://ieeexplore.ieee.org/document/6423871/

    [21] Sensale-Rodriguez B, Yan R S, Rafique S et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 12, 4518-4522(2012). http://europepmc.org/abstract/MED/22862777

    [22] Liu J T, Liu N H, Li J et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 101, 052104(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6253654

    [23] Hu J H, Huang Y Q, Duan X F et al. Enhanced absorption of graphene strips with a multilayer subwavelength grating structure[J]. Applied Physics Letters, 105, 221113(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6977833

    [24] Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 21, 9144-9155(2013). http://europepmc.org/abstract/med/23572003

    [25] Merano M. Fresnel coefficients of a two-dimensional atomic crystal[J]. Physical Review A, 93, 013832(2016). http://www.opticsinfobase.org/abstract.cfm?uri=LS-2016-JW4A.128

    [26] Blake P, Hill E W. Castro Neto A H, et al. Making graphene visible[J]. Applied Physics Letters, 91, 063124(2007).

    [27] Ying X X, Pu Y, Li Z et al. Absorption enhancement of graphene Salisbury screen in the mid-infrared regime[J]. Journal of Optics, 44, 59-67(2015). http://link.springer.com/article/10.1007/s12596-014-0230-9

    [28] Pu M B, Chen P, Wang Y Q et al. Strong enhancement of light absorption and highly directive thermal emission in graphene[J]. Optics Express, 21, 11618-11627(2013). http://europepmc.org/abstract/med/23736385

    [29] Ryzhii V, Ryzhii M, Satou A et al. Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures[J]. Journal of Applied Physics, 106, 084507(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5307911

    Cuihong Yang, Zhen Liu, Jingyun Zhang, Xiaofei Ma. Dependence of Optical Absorption Characterization of Graphene on Its Complex Optical Conductivity in Terahertz Regime[J]. Laser & Optoelectronics Progress, 2019, 56(5): 052601
    Download Citation