• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220270 (2022)
Changzheng Sun, Yanzhen Zheng, Bing Xiong, Lai Wang, Zhibiao Hao, Jian Wang, Yanjun Han, Hongtao Li, and Yi Luo
Author Affiliations
  • Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/IRLA20220270 Cite this Article
    Changzheng Sun, Yanzhen Zheng, Bing Xiong, Lai Wang, Zhibiao Hao, Jian Wang, Yanjun Han, Hongtao Li, Yi Luo. Advances in III-nitride-based microresonator optical frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220270 Copy Citation Text show less
    References

    [1] D T Spencer, T Drake, T C Briles, et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [2] M-G Suh, K J Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [3] P Trocha, M Karpov, D Ganin, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [4] M-G Suh, Q F Yang, K Y Yang, et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [5] A Dutt, C Joshi, X Ji, et al. On-chip dual-comb source for spectroscopy. Science Advances, 4, e1701858(2018).

    [6] J Liu, E Lucas, A S Raja, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photonics, 14, 486-491(2020).

    [7] V Brasch, E Lucas, J D Jost, et al. Self-referenced photonic chip soliton Kerr frequency comb. Light: Science & Applications, 6, e16202(2017).

    [8] E Obrzud, M Rainer, A Harutyunyan, et al. A microphotonic astrocomb. Nature Photonics, 13, 31-35(2019).

    [9] M-G Suh, X Yi, Y H Lai, et al. Searching for exoplanets using a microresonator astrocomb. Nature Photonics, 13, 25-30(2019).

    [10] G Moille, L Chang, W Xie, et al. Dissipative Kerr solitons in a III-V microresonator. Laser & Photonics Reviews, 14, 2000022(2020).

    [11] L Chang, W Xie, H Shu, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications, 11, 1331(2020).

    [12] X Ji, F A S Barbosa, S P Roberts, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619(2017).

    [13] Z Gong, A Bruch, M Shen, et al. High-fidelity cavity soliton generation in crystalline AlN microring resonators. Optics Letters, 43, 4366(2018).

    [14] X Liu, C Sun, B Xiong, et al. Integrated high- Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics, 5, 1943-1950(2018).

    [15] B J M Hausmann, I Bulu, M Lončar, et al. Diamond nonlinear photonics. Nature Photonics, 8, 369(2014).

    [16] Y He, Q-F Yang, J Ling, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).

    [17] Y Zheng, C Sun, B Xiong, et al. Integrated gallium nitride nonlinear photonics. Laser & Photonics Reviews, 16, 2100071(2022).

    [18] H Jung, C Xiong, K Y Fong, et al. Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 38, 2810-2813(2013).

    [19] H Jung, R Stoll, X Guo, et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 1, 396(2014).

    [20] X Liu, C Sun, B Xiong, et al. Integrated continuous-wave aluminum nitride Raman laser. Optica, 4, 893(2017).

    [21] X Liu, C Sun, B Xiong, et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities. Applied Physics Letters, 113, 171106(2018).

    [22] X Liu, Z Gong, A W Bruch, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications, 12, 5428(2021).

    [23] H Weng, J Liu, A A Afridi, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photonics Research, 9, 1351(2021).

    [24] C L Tang, W R Bosenberg, T Ukachi, et al. Optical parametric oscillators. Proceedings of the IEEE, 80, 365-374(1992).

    [25] A Godard. Infrared (2–12 μm) solid-state laser sources: A review. Comptes Rendus Physique, 8, 1100-1128(2007).

    [26] I Breunig, D Haertle, K Buse. Continuous-wave optical parametric oscillators: recent developments and prospects. Applied Physics B, 105, 99(2011).

    [27] A W Bruch, X Liu, J B Surya, et al. On-chip χ (2) microring optical parametric oscillator. Optica, 6, 1361(2019).

    [28] A W Bruch, X Liu, Z Gong, et al. Pockels soliton microcomb. Nature Photonics, 15, 21-27(2021).

    [29] A W Bruch, X Liu, X Guo, et al. 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Applied Physics Letters, 113, 131102(2018).

    [30] A W Bruch, C Xiong, B Leung, et al. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films. Applied Physics Letters, 107, 141113(2015).

    [31] E Stassen, M Pu, E Semenova, et al. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics. Optics Letters, 44, 1064(2019).

    Changzheng Sun, Yanzhen Zheng, Bing Xiong, Lai Wang, Zhibiao Hao, Jian Wang, Yanjun Han, Hongtao Li, Yi Luo. Advances in III-nitride-based microresonator optical frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220270
    Download Citation