• Photonics Research
  • Vol. 5, Issue 2, A44 (2017)
Carlo De Santi1、*, Matteo Meneghini1、4, Desiree Monti1, Johannes Glaab2, Martin Guttmann3, Jens Rass2, Sven Einfeldt2, Frank Mehnke3, Johannes Enslin3, Tim Wernicke3, Michael Kneissl2、3, Gaudenzio Meneghesso1, and Enrico Zanoni1
Author Affiliations
  • 1Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131, Italy
  • 2Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
  • 3Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin, Germany
  • 4e-mail: matteo.meneghini@dei.unipd.it
  • show less
    DOI: 10.1364/PRJ.5.000A44 Cite this Article Set citation alerts
    Carlo De Santi, Matteo Meneghini, Desiree Monti, Johannes Glaab, Martin Guttmann, Jens Rass, Sven Einfeldt, Frank Mehnke, Johannes Enslin, Tim Wernicke, Michael Kneissl, Gaudenzio Meneghesso, Enrico Zanoni. Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research, 2017, 5(2): A44 Copy Citation Text show less
    References

    [1] H. Hönigsmann. History of phototherapy in dermatology. Photochem. Photobiol. Sci., 12, 16-21(2013).

    [2] A. Endruweit, M. S. Johnson, A. C. Long. Curing of composite components by ultraviolet radiation: A review. Polym. Compos., 27, 119-128(2006).

    [3] M. Schreiner, J. Martínez-Abaigar, J. Glaab, M. Jansen. UV-B induced secondary plant metabolites. Opt. Photon., 9, 34-37(2014).

    [4] J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl. Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature. J. Appl. Phys., 118, 94504(2015).

    [5] K. H. Lee, H. J. Park, S. H. Kim, M. Asadirad, Y.-T. Moon, J. S. Kwak, J.-H. Ryou. Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to InGaN-based visible flip-chip light-emitting diodes. Opt. Express, 23, 20340(2015).

    [6] C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, E. Zanoni. Role of defects in the thermal droop of InGaN-based light emitting diodes. J. Appl. Phys., 119, 94501(2016).

    [7] N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, M. Kneissl. Investigation of the temperature dependent efficiency droop in UV LEDs. Semicond. Sci. Technol., 28, 125021(2013).

    [8] V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, R. Gaska. AlGaN single-quantum-well light-emitting diodes with emission at 285  nm. Appl. Phys. Lett., 81, 3666-3668(2002).

    [9] X. A. Cao, S. F. LeBoeuf, T. E. Stecher. Temperature-dependent electroluminescence of AlGaN-based UV LEDs. IEEE Electron Device Lett., 27, 329-331(2006).

    [10] F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, M. Kneissl. Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes. J. Appl. Phys., 117, 195704(2015).

    [11] J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, M. Kneissl. High-power UV-B LEDs with long lifetime. Proc. SPIE, 9363, 93631K(2015).

    [12] M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, M. Kneissl. Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces. Semicond. Sci. Technol., 28, 125015(2013).

    [13] M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, E. Kuokstis. III-Nitride UV devices. Jpn. J. Appl. Phys., 44, 7191-7206(2005).

    [14] A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, M. S. Shur. Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy. Appl. Phys. Lett., 95, 181914(2009).

    [15] A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, M. S. Shur. Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes. J. Appl. Phys., 108, 93113(2010).

    [16] A. Pinos, S. Marcinkevičius, M. S. Shur. High current-induced degradation of AlGaN ultraviolet light emitting diodes. J. Appl. Phys., 109, 103108(2011).

    [17] Sensor Electronic. Technical Data Sheet.

    [18] N. Grandjean, J. Massies, I. Grzegory, S. Porowski. GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy. Semicond. Sci. Technol., 16, 358-361(2001).

    [19] S. Chichibu, T. Sota, K. Wada, S. Nakamura. Exciton localization in InGaN quantum well devices. J. Vac. Sci. Technol. B, 16, 2204(1998).

    [20] S. Fan, Z. Qin, C. He, M. Hou, X. Wang, B. Shen, W. Li, W. Wang, D. Mao, P. Jin, J. Yan, P. Dong. Optical investigation of strong exciton localization in high Al composition AlxGa1-xN alloys. Opt. Express, 21, 24497(2013).

    [21] J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, B. Gil. Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters. Semicond. Sci. Technol., 29, 84001(2014).

    [22] N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, Ü. Özgür. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients. Proc. SPIE, 9363, 93632U(2015).

    [23] T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, C. Wetzel. Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells. Appl. Phys. Lett., 96, 10-13(2010).

    [24] G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, I. Akasaki. Optical investigations of AlGaN on GaN epitaxial films. Appl. Phys. Lett., 74, 2456-2458(1999).

    [25] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, H. X. Jiang. Exciton localization in AlGaN alloys. Appl. Phys. Lett., 88, 62103(2006).

    [26] H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, T. Yokogawa. Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers. J. Appl. Phys., 104, 053514(2008).

    [27] Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, Y. Kawakami. Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells. J. Appl. Phys., 117, 115702(2015).

    [28] H. X. Jiang, J. Y. Lin. AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications. Opto-Electron. Rev., 10, 271-286(2002).

    [29] Y. Xi, E. F. Schubert. Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Appl. Phys. Lett., 85, 2163-2165(2004).

    [30] G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, M. Stutzmann. Photoluminescence study of excitons in homoepitaxial GaN. J. Appl. Phys., 90, 5627-5631(2001).

    [31] S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, N. N. Ledentsov. Energy characteristics of excitons in structures based on InGaN alloys. Semiconductors, 42, 720-725(2008).

    [32] P. P. Paskov, T. Paskova, P. O. Holtz, B. Monemar. Polarized photoluminescence study of free and bound excitons in free-standing GaN. Phys. Rev. B, 70, 35210(2004).

    [33] X.-B. Chen, J. Huso, J. L. Morrison, L. Bergman. Dynamics of GaN band edge photoluminescence at near-room-temperature regime. J. Appl. Phys., 99, 46105(2006).

    [34] D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, D. Saha. Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires. Appl. Phys. Lett., 109, 31111(2016).

    [35] I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, K. S. Zhuravlev. Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5. Jpn. J. Appl. Phys., 55, 05FG09(2016).

    [36] L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, G. Borghs. Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy. J. Appl. Phys., 108, 73522(2010).

    [37] X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, H. Liu. Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes. Appl. Phys. Lett., 82, 3614-3616(2003).

    [38] D. O. Demchenko, I. C. Diallo, M. A. Reshchikov. Yellow luminescence of gallium nitride generated by carbon defect complexes. Phys. Rev. Lett., 110, 1-5(2013).

    [39] J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, K. Uchida. Selective excitation of the yellow luminescence of GaN. Physica B, 273–274, 75-79(1999).

    [40] D. Bimberg, M. Sondergeld, E. Grobe. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs. Phys. Rev. B, 4, 3451-3455(1971).

    [41] J. Piprek. Unified model for the GaN LED efficiency droop. Proc. SPIE, 7939, 793916(2011).

    [42] S. Karpov. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review. Opt. Quantum Electron., 47, 1293-1303(2015).

    [43] D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, C. Sone. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes. Appl. Phys. Lett., 99, 2012-2015(2011).

    [44] W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, G. Jacopin. Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells. Phys. Rev. B, 94, 195411(2016).

    [45] Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gaska. Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers. J. Phys. D, 49, 145110(2016).

    [46] E. Kioupakis, Q. Yan, D. Steiauf, C. G. Van de Walle. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. New J. Phys., 15, 125006(2013).

    [47] A. David, M. J. Grundmann. Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis. Appl. Phys. Lett., 96, 103504(2010).

    [48] J. Hader, J. V. Moloney, S. W. Koch. Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes. Appl. Phys. Lett., 96, 221106(2010).

    [49] D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, F. Scholz. Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. Phys. Status Solidi B, 250, 283-290(2013).

    [50]

    [51] A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, R. Gaska. Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects. J. Phys. D, 41, 155116(2008).

    [52] A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, D. Turchinovich. Efficient formation of excitons in a dense electron-hole plasma at room temperature. Phys. Rev. B, 92, 241305(2015).

    [53] S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, P. Gibart. Radiation induced defects in MOVPE grown n-GaN. Mater. Sci. Eng. B, 71, 100-103(2000).

    [54] F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, P. Gibart. Electrical characterisation of hole traps in n-type GaN. Phys. Status Solidi A, 201, 2271-2276(2004).

    [55] C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, S. J. Chua. Study of electrically active defects in n-GaN layer. Mater. Sci. Semicond. Process., 4, 595-600(2001).

    [56] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, S. J. Pearton. Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition. J. Appl. Phys., 106, 73706(2009).

    [57] P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, R. Czernecki. A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN. J. Appl. Phys., 111, 113105(2012).

    [58] Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, S. A. Ringel. Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy. Appl. Phys. Lett., 100, 1-5(2012).

    [59] M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, R. Gaska. Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm. Appl. Phys. Lett., 82, 167-169(2003).

    [60] J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, M. Asif Khan. AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission. Appl. Phys. Lett., 83, 3456-3458(2003).

    CLP Journals

    [1] Yufeng Li, Chenyu Wang, Ye Zhang, Peng Hu, Shengnan Zhang, Mengqi Du, Xilin Su, Qiang Li, Feng Yun. Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED[J]. Photonics Research, 2020, 8(6): 806

    Carlo De Santi, Matteo Meneghini, Desiree Monti, Johannes Glaab, Martin Guttmann, Jens Rass, Sven Einfeldt, Frank Mehnke, Johannes Enslin, Tim Wernicke, Michael Kneissl, Gaudenzio Meneghesso, Enrico Zanoni. Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research, 2017, 5(2): A44
    Download Citation