• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011012 (2021)
Wenwen Li1、2 and Zhongyang Wang1、*
Author Affiliations
  • 1Center for Fundamental Interdisciplinary Research, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 2School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.1011012 Cite this Article Set citation alerts
    Wenwen Li, Zhongyang Wang. Research Progress of Super-Resolution Fluorescence Microscopy Based on Quantum Correlation[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011012 Copy Citation Text show less
    References

    [1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Turkowyd B, Virant D, Endesfelder U. From single molecules to life: microscopy at the nanoscale[J]. Analytical and Bioanalytical Chemistry, 408, 6885-6911(2016).

    [3] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018). http://www.ncbi.nlm.nih.gov/pubmed/30166485

    [4] Hell S W, Sahl S J, Bates M et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 48, 443001(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=b8cbc2220208e1b3e99a914cf61b25fa

    [5] Aspelmeier T, Egner A, Munk A. Modern statistical challenges in high-resolution fluorescence microscopy[J]. Annual Review of Statistics and Its Application, 2, 163-202(2015).

    [6] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-19-11-780

    [7] Hell S W, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit[J]. Applied Physics B, 60, 495-497(1995). http://link.springer.com/article/10.1007/BF01081333?error=cookies_not_supported&code=207488fd-ecec-4200-9fa3-6ed117de89eb

    [8] Hofmann M, Eggeling C, Jakobs S et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. PNAS, 102, 17565-17569(2005).

    [9] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000). http://jmicro.oxfordjournals.org/external-ref?access_num=10.1046/j.1365-2818.2000.00710.x&link_type=DOI

    [10] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [11] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [12] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photonfluxes[J]. Science, 355, 606-612(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=04ae63ed686a65ee27cfb495a29da34c

    [13] Gu L S, Li Y Y, Zhang S W et al. Molecular resolution imaging by repetitive optical selective exposure[J]. Nature Methods, 16, 1114-1118(2019). http://www.nature.com/articles/s41592-019-0544-2

    [14] Min G. Principles of three-dimensional imaging in confocal microscopes[M]. Singapore: World Scientific, 15-45(1996).

    [15] Minsky M. Microscopy apparatus: US3013467[P](1961).

    [16] Harke B, Keller J, Ullal C K et al. Resolution scaling in STED microscopy[J]. Optics Express, 16, 4154-4162(2008).

    [17] Thompson R E, Larson D R, Webb W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 82, 2775-2783(2002). http://www.ncbi.nlm.nih.gov/pubmed/11964263

    [18] Zhu L, Zhang W, Elnatan D et al. Faster STORM using compressed sensing[J]. Nature Methods, 9, 721-723(2012).

    [19] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-4-458

    [20] Cole R. Live-cell imaging[J]. Cell Adhesion & Migration, 8, 452-459(2014).

    [21] Mandel J, Wolf E. Optical coherence and quantum optics[M], 430-803(1995).

    [22] Nayak K P, le Kien F, Morinaga M et al. Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber[J]. Physical Review A, 79, 021801(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000019000008000100000001&idtype=cvips&gifs=Yes

    [23] Messin G, Hermier J P, Giacobino E et al. Bunching and antibunching in the fluorescence of semiconductor nanocrystals[J]. Optics Letters, 26, 1891-1893(2001).

    [24] Berchera I R, Degiovanni I P. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology[J]. Metrologia, 56, 024001(2019).

    [25] Genovese M. Real applications of quantum imaging[J]. Journal of Optics, 18, 073002(2016).

    [26] Thiel C, Bastin T, von Zanthier v et al. Sub-Rayleigh quantum imaging using single-photon sources[J]. Physical Review A, 80, 013820(2009).

    [27] Giovannetti V, Lloyd S, Maccone L et al. Publisher’s note: sub-Rayleigh-diffraction-bound quantum imaging[J]. Physical Review A, 79, 039901(2009).

    [28] Thiel C, Bastin T, Martin J et al. Quantum imaging with incoherent photons[J]. Physical Review Letters, 99, 133603(2007). http://www.researchgate.net/publication/301859957_Quantum_Imaging_with_Incoherent_Photons/download

    [29] Taylor M A, Janousek J, Daria V et al. Biological measurement beyond the quantum limit[C]. //International Quantum Electronics Conference 2013, May 12-16, 2013, Munich Germany, IA_5_1(2013).

    [30] Brida G, Genovese M, Berchera I R. Experimental realization of sub-shot-noise quantum imaging[J]. Nature Photonics, 4, 227-230(2010). http://www.nature.com/articles/nphoton.2010.29

    [31] Samantaray N, Ruo-Berchera I, Meda A et al. Realization of the first sub-shot-noise wide field microscope[J]. Light, Science & Applications, 6, e17005(2017).

    [32] Losero E, Ruo-Berchera I, Meda A et al. Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams[J]. Scientific Reports, 8, 7431(2018). http://europepmc.org/abstract/MED/29743618

    [33] Brambilla E, Caspani L, Jedrkiewicz O et al. High-sensitivity imaging with multi-mode twinbeams[J]. Physical Review A, 77, 053807(2008).

    [34] Muthukrishnan A, Scully M O, Zubairy M S. Quantum microscopy using photon correlations[J]. Journal of Optics B: Quantum and Semiclassical Optics, 6, S575-S582(2004). http://adsabs.harvard.edu/abs/2004JOptB...6S.575M

    [35] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [36] Demkowicz-Dobrzański R, Jarzyna M, Kołodyński J. Quantum limits in optical interferometry[J]. Progress in Optics, 60, 345-435(2015). http://www.sciencedirect.com/science/article/pii/S0079663815000049

    [37] Lounis B, Orrit M. Single-photon sources[J]. Reports on Progress in Physics, 68, 1129-1179(2005).

    [38] Scheel S. Single-photon sources-an introduction[J]. Journal of Modern Optics, 56, 141-160(2009).

    [39] Polyakov S V, Migdall A L. Quantum radiometry[J]. Journal of Modern Optics, 56, 1045-1052(2009).

    [40] Duan Z C, Li J P, He Y M. Single-photon source and its application on quantum information[J]. Low Temperature Physical Letters, 40, 1-16(2018).

    [41] Häffner H, Roos C F, Blatt R. Quantum computing with trapped ions[J]. Physics Reports, 469, 155-203(2008).

    [42] Bloch I. Quantum coherence and entanglement with ultracold atoms in opticallattices[J]. Nature, 453, 1016-1022(2008). http://scitation.aip.org/content/aip/magazine/physicstoday/news/news-picks/quntum_coherence_nd_entngle-a-news-pick-post

    [43] Michler P, Imamoglu A, Mason M D et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 406, 968-970(2000). http://europepmc.org/abstract/med/10984045

    [44] Brokmann X, Giacobino E, Dahan M et al. Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals[J]. Applied Physics Letters, 85, 712-714(2004). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4875636

    [45] Lubin G, Tenne R, Antolovic I M et al. Quantum correlation measurement with single photon avalanche diodearrays[J]. Optics Express, 27, 32863-32882(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878363

    [46] Bao N T T, Trung D V, Phuong D T. Measuring anti-bunching effect from single dye molecules and single quantum dots[J]. Communications in Physics, 26, 67-73(2016). http://adsabs.harvard.edu/abs/2016CPhy...26...67B

    [47] Basché T, Moerner W E, Orrit M et al. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid[J]. Physical Review Letters, 69, 1516-1519(1992). http://peds.oxfordjournals.org/external-ref?access_num=10.1103/PhysRevLett.69.1516&link_type=DOI

    [48] Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature[J]. Nature, 407, 491-493(2000).

    [49] Lukishova S G, Schmid A W, McNamara A J et al. Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1512-1518(2003). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1263783

    [50] Kiraz A, Ehrl M, Hellerer T et al. Observation of two-photon interference using the zero-phonon-line emission of a single molecule[J]. Journal of Physics: Conference Series, 36, 67-71(2006). http://adsabs.harvard.edu/abs/2006JPhCS..36...67K

    [51] Kurtsiefer C, Mayer S, Zarda P et al. Stable solid-state source of single photons[J]. Physical Review Letters, 85, 290-293(2000).

    [52] Cui J M, Sun F W, Chen X D et al. Quantum statistical imaging of particles without restriction of the diffraction limit[J]. Physical Review Letters, 110, 153901(2013). http://www.ncbi.nlm.nih.gov/pubmed/25167270

    [53] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 178, 1046-1048(1956). http://www.nature.com/articles/1781046a0/

    [54] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044-2046(1987). http://www.ncbi.nlm.nih.gov/pubmed/10035403

    [55] Rezai M, Wrachtrup J, Gerhardt I. Coherence properties of molecular single photons for quantum networks[J]. Physical Review X, 8, 031026(2018). http://www.researchgate.net/publication/326646776_Coherence_Properties_of_Molecular_Single_Photons_for_Quantum_Networks

    [56] Kubo R. Astochastic theory of line shape[M]. //Rice S, Hixon F P, Franck J, et al. Advances in chemical physics, 101-127(2007).

    [57] Kambs B, Becher C. Limitations on the indistinguishability of photons from remote solid statesources[J]. New Journal of Physics, 20, 115003(2018). http://arxiv.org/abs/1806.08213v1

    [58] Schimpf C, Reindl M, Klenovský P et al. Resolving the temporal evolution of line broadening in single quantum emitters[J]. Optics Express, 27, 35290-35307(2019). http://arxiv.org/abs/1903.12447?context=cond-mat

    [59] Classen A, von Zanthier J, Agarwal G S. Analysis of super-resolution via 3D structured illumination intensity correlation microscopy[J]. Optics Express, 26, 27492-27503(2018).

    [60] Monticone D G, Katamadze K, Traina P et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics[J]. Physical Review Letters, 113, 143602(2014). http://www.ncbi.nlm.nih.gov/pubmed/25325642

    [61] Schwartz O, Levitt J M, Tenne R et al. Superresolution microscopy with quantum emitters[J]. Nano Letters, 13, 5832-5836(2013). http://www.ncbi.nlm.nih.gov/pubmed/24195698

    [62] Israel Y, Tenne R, Oron D et al. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera[J]. Nature Communications, 8, 14786(2017). http://www.nature.com/articles/ncomms14786

    [63] Classen A, von Zanthier J, Scully M O et al. Superresolution via structured illumination quantum correlation microscopy[J]. Optica, 4, 580-587(2017).

    [64] Aßmann M. Quantum-optically enhanced STORM (QUEST) for multi-emitter localization[J]. Scientific Reports, 8, 7829(2018). http://www.nature.com/articles/s41598-018-26271-1

    [65] Tenne R, Rossman U, Rephael B et al. Super-resolution enhancement by quantum image scanning microscopy[J]. Nature Photonics, 13, 116-122(2019). http://www.nature.com/articles/s41566-018-0324-z

    [66] Wu Z W, Qiu X D, Chen L X. Currentstatus and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [67] Kolobov M I. Quantum imaging[M](2007).

    [68] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=fb9fef773a2f90d837ee2b2d877c8b6b

    [69] Shih Y H. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012). http://link.springer.com/article/10.1007/s11128-012-0396-5

    [70] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995). http://europepmc.org/abstract/MED/10058246

    [71] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004). http://europepmc.org/abstract/MED/15089466

    [72] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [73] Zhang D, Zhai Y H, Wu L A et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005). http://www.researchgate.net/publication/7569406_Correlated_two-photon_imaging_with_true_thermal_light

    [74] Liu X F, Chen X H, Yao X R et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 39, 2314-2317(2014). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-39-8-2314

    [75] Liu Z T, Tan S Y, Wu J R et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 6, 25718(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4867594/

    [76] Han S S, Yu H, Shen X et al. Areview of ghost imaging via sparsity constraints[J]. Applied Sciences, 8, 1379-1397(2018). http://www.researchgate.net/publication/327065951_A_Review_of_Ghost_Imaging_via_Sparsity_Constraints/download

    [77] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008). http://ieeexplore.ieee.org/document/4472240/

    [78] Candès E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 23, 969-985(2007). http://arxiv.org/abs/math/0611957v1

    [79] Candès E J, Fernandez-Granda C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 67, 906-956(2014). http://onlinelibrary.wiley.com/doi/10.1002/cpa.21455/abstract

    [80] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6325241

    [81] Yu H, Lu R, Han S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [82] Tong Z S, Liu Z T, Wang J et al. Spatial resolution limit of ghost imaging camera via sparsity constraints[EB/OL]. (2020-03-31)[2021-04-01]. https://arxiv.org/abs/2004.00135

    [83] Li W W, Tong Z S, Xiao K et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019). http://arxiv.org/abs/1906.05452v1

    [84] Ovesný M, Křížek P, Borkovec J et al. ThunderSTORM: a comprehensive Image J plug-in for PALM and STORM data analysis and super-resolution imaging[J]. Bioinformatics, 30, 2389-2390(2014).

    Wenwen Li, Zhongyang Wang. Research Progress of Super-Resolution Fluorescence Microscopy Based on Quantum Correlation[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011012
    Download Citation