• Acta Optica Sinica
  • Vol. 42, Issue 9, 0900001 (2022)
Yulong Cui1、2, Zhiyue Zhou1、2, Wei Huang1、2, Zhixian Li1、2, Hao Li1、2, Meng Wang1、2、3, and Zefeng Wang1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/AOS202242.0900001 Cite this Article Set citation alerts
    Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Hao Li, Meng Wang, Zefeng Wang. Progress and Prospect of Mid-Infrared Fiber Laser Technology[J]. Acta Optica Sinica, 2022, 42(9): 0900001 Copy Citation Text show less
    References

    [1] Liu Z Y, Bian J T, Shao L et al. Progress of mid-infrared laser technology[J]. Laser & Infrared, 43, 853-858(2013).

    [2] Seddon A B, Tang Z Q, Furniss D et al. Progress in rare-earth-doped mid-infrared fiber lasers[J]. Optics Express, 18, 26704-26719(2010).

    [3] Guo Q X[J]. The Application Study of laser in biomedicine Optoelectronic Technology & Information, 1999, 31-34.

    [4] Lippert E, Nicolas S, Arisholm G et al. Midinfrared laser source with high power and beam quality[J]. Applied Optics, 45, 3839-3845(2006).

    [5] Kieleck C, Eichhorn M, Hirth A et al. High-efficiency 20--50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser[J]. Optics Letters, 34, 262-264(2009).

    [6] Yao B Q, Wang Y Z, Wang Q. Development of mid infrared optical parametric oscillator[J]. Laser Technology, 26, 217-220(2002).

    [7] Chang T, Wood O. An optically pumped CO2 laser[J]. IEEE Journal of Quantum Electronics, 8, 598(1972).

    [8] Zhang L M, Zhou S H, Zhao H et al. Introduction of Fe 2+ doped mid-infrared solid state laser[J]. Laser & Infrared, 42, 360-364(2012).

    [9] Vurgaftman I, Meyer J R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers[J]. Journal of Applied Physics, 99, 123108(2006).

    [10] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [11] Jackson S D, King T A. CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser[J]. IEEE Journal of Quantum Electronics, 34, 1578-1587(1998).

    [12] Davey S T, France P W. Rare earth doped fluorozirconate glasses for fibre devices[J]. British Telecom Technology Journal, 7, 58-68(1989).

    [13] Kumta P N, Risbud S H. Rare-earth chalcogenides: an emerging class of optical materials[J]. Journal of Materials Science, 29, 1135-1158(1994).

    [14] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [15] Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber[J]. Optics Letters, 31, 3574-3576(2006).

    [16] Belardi W, Knight J C. Hollow antiresonant fibers with low bending loss[J]. Optics Express, 22, 10091-10096(2014).

    [17] Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3--4 μm spectral region[J]. Optics Express, 20, 11153-11158(2012).

    [18] Litchinitser N M, Abeeluck A K, Headley C et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 27, 1592-1594(2002).

    [19] Duguay M A, Kokubun Y, Koch T L et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 49, 13-15(1986).

    [20] Nampoothiri A V V, Jones A M, Fourcade-Dutin C et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited][J]. Optical Materials Express, 2, 948-961(2012).

    [21] Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 43, 1471-1474(2018).

    [22] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [23] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).

    [24] Jackson S D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm[J]. Optics Letters, 29, 334-336(2004).

    [25] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [26] Jackson S D, Jain R K. Fiber-based sources of coherent MIR radiation: key advances and future prospects (invited)[J]. Optics Express, 28, 30964-31019(2020).

    [27] Wetenkamp L. Efficient CW operation of a 2.9 μm Ho 3+-doped fluorozirconate fibre laser pumped at 640 nm[J]. Electronics Letters, 26, 883-884(1990).

    [28] Többen H. CW lasing at 3.45 μm in erbium-doped fluorozirconate fibres[J]. Frequenz, 45, 250-252(1991).

    [29] Többen H. Room temperature CW fibre laser at 3.5 μm in Er 3+-doped ZBLAN glass[J]. Electronics Letters, 28, 1361-1362(1992).

    [30] Schneider J. Fluoride fibre laser operating at 3.9 μm[J]. Electronics Letters, 31, 1250-1251(1995).

    [31] Schneider J, Carbonnier C, Unrau U B. Characterization of a Ho 3+-doped fluoride fiber laser with a 3.9-mum emission wavelength[J]. Applied Optics, 36, 8595-8600(1997).

    [32] Carbonnier C, Többen H, Unrau U B. Room temperature CW fibre laser at 3.22 μm[J]. Electronics Letters, 34, 893-894(1998).

    [33] Sumiyoshi T, Sekita H. Dual-wavelength continuous-wave cascade oscillation at 3 and 2 μm with a holmium-doped fluoride-glass fiber laser[J]. Optics Letters, 23, 1837-1839(1998).

    [34] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Applied Physics Letters, 83, 1316-1318(2003).

    [35] Jackson S D. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm[J]. Optics Letters, 34, 2327-2329(2009).

    [36] Tsang Y H. El-Taher A E, King T A, et al. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd∶YAG laser operating at 1.3 μm[J]. Optics Express, 14, 678-685(2006).

    [37] Talavera D V, Mejía E B. Holmium-doped fluoride fiber laser at 2950 nm pumped at 1175 nm[J]. Laser Physics, 16, 436-440(2006).

    [38] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [39] Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 17, 16941-16946(2009).

    [40] Faucher D, Bernier M, Caron N et al. Erbium-doped all-fiber laser at 2.94 μm[J]. Optics Letters, 34, 3313-3315(2009).

    [41] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 36, 1104-1106(2011).

    [42] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [43] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [44] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 41, 1676-1679(2016).

    [45] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [46] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [47] Maes F, Stihler C, Pleau L P et al. 3.42 μm lasing in heavily-erbium-doped fluoride fibers[J]. Optics Express, 27, 2170-2183(2019).

    [48] Majewski M R, Amin M Z, Berthelot T et al. Directly diode-pumped mid-infrared dysprosium fiber laser[J]. Optics Letters, 44, 5549-5552(2019).

    [49] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [50] Guo C Y, Dong F L, Shen P S et al. 20 W mid infrared 2.8 μm research on the all fiber laser[J]. Chinese Journal of Lasers, 48, 1416001(2021).

    [51] Iqbal T, Shahriari M R, Foy P et al. Preliminary study of fiber drawing of AlF3-based glasses[J]. Materials Science and Engineering, 12, 299-303(1992).

    [52] Huang F, Ma Y, Li W et al. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3[J]. Scientific Reports, 4, 3607(2014).

    [53] Lebullenger R. Benjaballah S, le Deit C, et al. Systematic substitutions in ZBLA and ZBLAN glasses[J]. Journal of Non-Crystalline Solids, 161, 217-221(1993).

    [54] Wang S B, Zhang J Q, Xu N N et al. 2.9 μm lasing from a Ho 3+/Pr 3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser[J]. Optics Letters, 45, 1216-1219(2020).

    [55] Coco M G, Aro S C. McDaniel S A, et al. Continuous wave Fe 2+∶ZnSe mid-IR optical fiber lasers[J]. Optics Express, 28, 30263-30274(2020).

    [56] Lucas P, Wilhelm A A, Videa M et al. Chemical stability of chalcogenide infrared glass fibers[J]. Corrosion Science, 50, 2047-2052(2008).

    [57] Nunes J J, Sojka A, Crane R W et al. Room temperature mid-infrared fiber lasing beyond 5 μm in chalcogenide glass small-core step index fiber[J]. Optics Letters, 46, 3504-3507(2021).

    [58] Tokita S, Hirokane M, Murakami M et al. Stable 10 W Er∶ZBLAN fiber laser operating at 2.71--2.88 μm[J]. Optics Letters, 35, 3943-3945(2010).

    [59] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1502309(2015).

    [60] Fortin V, Maes F, Bernier M et al. Watt-level erbium-doped all-fiber laser at 3.44 μm[J]. Optics Letters, 41, 559-562(2016).

    [61] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 41, 2173-2176(2016).

    [62] Qin Z P, Xie G Q, Ma J G et al. Mid-infrared Er∶ZBLAN fiber laser reaching 3.68 μm wavelength[J]. Chinese Optics Letters, 15, 111402(2017).

    [63] Wang C C, Luo H Y, Yang J et al. Watt-level ~3.5 μm Er 3+-doped ZrF4 fiber laser using dual-wavelength pumping at 655 and 1981 nm[J]. IEEE Photonics Technology Letters, 33, 784-787(2021).

    [64] Jia S J, Jia Z X, Yao C F et al. Ho 3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Physics, 28, 015802(2018).

    [65] Zhu X S, Zhu G W, Wei C et al. Pulsed fluoride fiber lasers at 3 μm [Invited][J]. Journal of the Optical Society of America B, 34, A15-A28(2017).

    [66] Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 30, 706-707(1994).

    [67] Frerichs C, Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm[J]. Optical Fiber Technology, 2, 358-366(1996).

    [68] Gorjan M, Petkovšek R. Marin ek M, et al. High-power pulsed diode-pumped Er∶ZBLAN fiber laser[J]. Optics Letters, 36, 1923-1925(2011).

    [69] Tokita S, Murakami M, Shimizu S et al. 12 W Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 36, 2812-2814(2011).

    [70] Wei C, Zhu X S, Norwood R A et al. Passively Q-switched 2.8-μm nanosecond fiber laser[J]. IEEE Photonics Technology Letters, 24, 1741-1744(2012).

    [71] Wei C, Zhu X S, Wang F et al. Graphene Q-switched 2.78 μm Er 3+-doped fluoride fiber laser[J]. Optics Letters, 38, 3233-3236(2013).

    [72] Tokita S, Murakami M, Shimizu S et al. Graphene Q-switching of a 3 μm Er∶ZBLAN fiber laser. [C]∥Advanced Solid-State Lasers Congress, October 27-November 1, 2013, Paris, France. Washington, D.C.: OSA, AF2A, 9(2013).

    [73] Zhu G W, Zhu X S, Norwood R A et al. Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8 μm[J]. Journal of Lightwave Technology, 32, 4553-4557(2014).

    [74] Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 23, 24713-24718(2015).

    [75] Zhang T, Feng G Y, Zhang H et al. 2.78μm passively Q-switched Er 3+-doped ZBLAN fiber laser based on PLD-Fe 2+∶ZnSe film[J]. Laser Physics Letters, 13, 075102(2016).

    [76] Luo H Y, Li J F, Xie J T et al. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system[J]. Optics Express, 24, 29022-29032(2016).

    [77] Shen Y L, Wang Y S, Luan K P et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 123, 105(2017).

    [78] Wei C, Zhang H, Shi H et al. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range[J]. IEEE Photonics Technology Letters, 29, 881-884(2017).

    [79] Ning S G, Feng G Y, Zhang H et al. Fabrication of Fe 2+∶ZnSe nanocrystals and application for a passively Q-switched fiber laser[J]. Optical Materials Express, 8, 865-874(2018).

    [80] Wu M, Liu J, Li Y et al. Stable and efficient pulsed mid-infrared laser generation from an Er 3+-doped ZBLAN fiber laser[J]. Journal of Russian Laser Research, 39, 177-181(2018).

    [81] Sojka L, Pajewski L, Lamrini S et al. Experimental investigation of actively Q-switched Er 3+∶ZBLAN fiber laser operating at around 2.8 μm[J]. Sensors, 20, 4642(2020).

    [82] Duan Q W, Yang L L, He Y et al. Layered Ta2NiS5Q-switcher for mid-infrared fluoride fiber laser[J]. IEEE Photonics Journal, 13, 1500404(2021).

    [83] Qin Z P, Hai T, Xie G Q et al. Black phosphorus Q-switched and mode-locked mid-infrared Er∶ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 26, 8224-8231(2018).

    [84] Yang J, Luo H Y, Liu F et al. Widely tunable gain-switched Er 3+-doped ZrF4 fiber laser from 3.4 to 3.7 μm[J]. IEEE Photonics Technology Letters, 32, 1335-1338(2020).

    [85] Fang Z Q, Zhang C X, Liu J et al. 3.46 μm Q-switched Er 3+∶ZBLAN fiber laser based on a semiconductor saturable absorber mirror[J]. Optics & Laser Technology, 141, 107131(2021).

    [86] Hu T, Hudson D D, Jackson S D. Actively Q-switched 2.9 μm Ho 3+Pr 3+-doped fluoride fiber laser[J]. Optics Letters, 37, 2145-2147(2012).

    [87] Li J F, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Optics Letters, 37, 2208-2210(2012).

    [88] Li J F, Yang Y, Hudson D D et al. A tunable Q-switched Ho 3+-doped fluoride fiber laser[J]. Laser Physics Letters, 10, 045107(2013).

    [89] Li J F, Hu T, Jackson S D. Q-switched induced gain switching of a two-transition cascade laser[J]. Optics Express, 20, 13123-13128(2012).

    [90] Zhu G W, Zhu X S, Balakrishnan K et al. Fe 2+∶ZnSe and graphene Q-switched singly Ho 3+-doped ZBLAN fiber lasers at 3 μm[J]. Optical Materials Express, 3, 1365-1377(2013).

    [91] Li J F, Luo H Y, He Y L et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Proceedings of SPIE, 9135, 913504(2014).

    [92] Li J F, Luo H Y, Wang L L et al. Tunable Fe 2+∶ZnSe passively Q-switched Ho 3+-doped ZBLAN fiber laser around 3 μm[J]. Optics Express, 23, 22362-22370(2015).

    [93] Li J F, Luo H Y, Wang L L et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 40, 3659-3662(2015).

    [94] Li J F, Luo H Y, Zhai B et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers[J]. Scientific Reports, 6, 30361(2016).

    [95] Wei C, Luo H Y, Zhang H et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 13, 105108(2016).

    [96] Luo H Y, Tian X L, Gao Y et al. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region[J]. Photonics Research, 6, 900-907(2018).

    [97] Li W W, Wang H J, Du T J et al. Compact self-Q-switched, tunable mid-infrared all-fiber pulsed laser[J]. Optics Express, 26, 34497-34502(2018).

    [98] Wei C, Lyu Y J, Shi H X et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1100206(2019).

    [99] Wei C, Zhou L Q, Wang D S et al. MXene-Ti3C2Tx for watt-level high-efficiency pulse generation in a 2.8 μm mid-infrared fiber laser[J]. Photonics Research, 8, 972-977(2020).

    [100] Zhang X J, Li W W, Li J et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm[J]. Opto-Electronic Advances, 3, 190032(2020).

    [101] Luo H Y, Li J F, Gao Y et al. Fiber laser from 2.71 to 3.08 μm using PbS nanoparticles[J]. Optics Letters, 44, 2322-2325(2019).

    [102] Luo H Y, Xu Y, Li J F et al. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 μm[J]. Optics Express, 27, 27151-27158(2019).

    [103] Woodward R I, Majewski M R. MacAdam N, et al. Q-switched Dy∶ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus[J]. Optics Express, 27, 15032-15045(2019).

    [104] Yang J, Hu J Y, Luo H Y et al. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm[J]. Photonics Research, 8, 70-77(2019).

    [105] Shiryaev V S, Sukhanov M V, Velmuzhov A P et al. Core-clad terbium doped chalcogenide glass fiber with laser action at 5.38 μm[J]. Journal of Non-Crystalline Solids, 567, 120939(2021).

    [106] Wei C, Zhu X S, Norwood R A et al. Passively continuous-wave mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 37, 3849-3851(2012).

    [107] Haboucha A, Fortin V, Bernier M et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er 3+∶fluoride glass fiber laser[J]. Optics Letters, 39, 3294-3297(2014).

    [108] Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er 3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 40, 4855-4858(2015).

    [109] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).

    [110] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 40, 4226-4428(2015).

    [111] Qin Z P, Xie G, Zhao C J et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 41, 56-59(2016).

    [112] Qin Z P, Xie G Q, Gu H G et al. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics., 1, 065001(2019).

    [113] Guo C Y, Wei J C, Yan P G et al. Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 13, 012013(2020).

    [114] Huang J, Pang M, Jiang X et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 7, 574-579(2020).

    [115] Henderson-Sapir O, Bawden N, Majewski M R et al. Mode-locked and tunable fiber laser at the 3.5 μm band using frequency-shifted feedback[J]. Optics Letters, 45, 224-227(2019).

    [116] Li J F, Hudson D D, Liu Y et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747-3749(2012).

    [117] Hu T, Hudson D D, Jackson S D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class[J]. Optics Letters, 39, 2133-2136(2014).

    [118] Yin K, Jiang T, Zheng X et al. -05-23)[2021-05-06]. https:∥arxiv., org/abs/1505, 06322(2015).

    [119] Antipov S, Hudson D D, Fuerbach A et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 3, 1373-1376(2016).

    [120] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 3, 116106(2018).

    [121] Wang Y C, Jobin F, Duval S et al. Ultrafast Dy 3+∶fluoride fiber laser beyond 3 μm[J]. Optics Letters, 44, 395-398(2019).

    [122] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).

    [123] Gu H G, Qin Z P, Xie G Q et al. Generation of 131 fs mode-locked pulses from 2.8 μm Er∶ZBLAN fiber laser[J]. Chinese Optics Letters, 18, 031402(2020).

    [124] Jackson S D, Anzueto-Sanchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 88, 221106(2006).

    [125] Stolen R H, Ippen E P, Tynes A R. Raman oscillation in glass optical waveguide[J]. Applied Physics Letters, 20, 62-64(1972).

    [126] Fortin V, Bernier M, Faucher D et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm[J]. Optics Express, 20, 19412-19419(2012).

    [127] Fortin V, Bernier M, Carrier J et al. Fluoride glass Raman fiber laser at 2185 nm[J]. Optics Letters, 36, 4152-4154(2011).

    [128] Agrawal G P. Nonlinear fiber optics[M]. Heidelberg: Springer(2000).

    [129] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [130] Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 39, 2052-2055(2014).

    [131] Zhu G W, Geng L X, Zhu X S et al. Towards ten-watt-level 3--5 μm Raman lasers using tellurite fiber[J]. Optics Express, 23, 7559-7573(2015).

    [132] Dong G P, Tao H Z, Chu S S et al. Structural dependence of ultrafast third-order optical nonlinearity of Ge-Ga-Ag-S chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 354, 440-444(2008).

    [133] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).

    [134] Qin G S, Jose R, Ohishi Y. Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation[J]. Journal of Applied Physics, 101, 093109(2007).

    [135] Mori A, Masuda H, Shikano K et al. Ultra-wide-band tellurite-based fiber Raman amplifier[J]. Journal of Lightwave Technology, 21, 1300-1306(2003).

    [136] Qin G S, Liao M S, Suzuki T et al. Widely tunable ring-cavity tellurite fiber Raman laser[J]. Optics Letters, 33, 2014-2016(2008).

    [137] Ni C Q, Gao W Q, Chen X C et al. Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber[J]. Applied Optics, 56, 9171-9178(2017).

    [138] Mitschke F M, Mollenauer L F. Discovery of the soliton self-frequency shift[J]. Optics Letters, 11, 659-661(1986).

    [139] Tang Y X, Wright L G, Charan K et al. Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber[J]. Optica, 3, 948-951(2016).

    [140] Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm[J]. Optics Letters, 41, 5294-5297(2016).

    [141] Dudley J M, Taylor J R[M]. Supercontinuum generation in optical fibers(2009).

    [142] Hagen C L, Walewski J W, Sanders S T. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source[J]. IEEE Photonics Technology Letters, 18, 91-93(2006).

    [143] Xia C N, Xu Z, Islam M N et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 422-434(2009).

    [144] Yang L Y, Li Y, Zhang B et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 7, 1061-1065(2019).

    [145] Yang L Y, Zhang B, He X et al. 20.6 W mid-infrared supercontinuum generation in ZBLAN fiber with spectrum of 1.9--4.3 μm[J]. Journal of Lightwave Technology, 38, 5122-5127(2020).

    [146] Li Z R, Jia Z X, Yao C F et al. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers[J]. Optics Letters, 45, 1882-1885(2020).

    [147] Gauthier J C, Fortin V, Carrée J Y et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 41, 1756-1759(2016).

    [148] Yang L Y, Zhang B, He X et al. High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 μm[J]. Optics Express, 28, 14973-14979(2020).

    [149] Woyessa G, Kwarkye K, Dasa M K et al. Power stable 1.5--10.5 μm cascaded mid-infrared supercontinuum laser without thulium amplifier[J]. Optics Letters, 46, 1129-1132(2021).

    [150] Yan B, Huang T, Zhang W W et al. Generation of Watt-level supercontinuum covering 2--6.5 μm in an all-fiber structured infrared nonlinear transmission system[J]. Optics Express, 29, 4048-4057(2021).

    [151] Swiderski J, Grzes P. High-power mid-IR supercontinuum generation in fluoroindate and arsenic sulfide fibers pumped by a broadband 1.9--2.7 μm all-fiber laser source[J]. Optics & Laser Technology, 141, 107178(2021).

    [152] Zhao Z M, Wang X S, Dai S X et al. 1.5--14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 41, 5222-5225(2016).

    [153] Cheng T, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [154] Yu Y, Zhang B, Gai X et al. 1.8--10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 40, 1081-1084(2015).

    [155] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4--13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [156] Hudson D D, Antipov S, Li L Z et al. Toward all-fiber supercontinuum spanning the mid-infrared[J]. Optica, 4, 1163-1166(2017).

    [157] Yang W Q, Zhang B, Xue G H et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 39, 1849-1852(2014).

    [158] Liu K, Liu J, Shi H X et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 22, 24384-24391(2014).

    [159] Zheng Z J, Ouyang D Q, Zhao J Q et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 4, 135-139(2016).

    [160] Yin K, Zhang B, Yang L et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm[J]. Optics Letters, 42, 2334-2337(2017).

    [161] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [162] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [163] Michalska M, Mikolajczyk J, Wojtas J et al. Mid-infrared, super-flat, supercontinuum generation covering the 2--5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses[J]. Scientific Reports, 6, 39138(2016).

    [164] Liang S J, Xu L, Fu Q et al. 295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 μm[J]. Optics Express, 26, 6490-6498(2018).

    [165] Yehouessi J P, Vidal S, Carréeb J Y et al. 3 W Mid-IR supercontinuum extended up to 4.6 μm based on an all-PM thulium doped fiber gain-switch laser seeding an InF3 fiber[J]. Proceedings of SPIE, 10902, 1090207(2019).

    [166] Scurria G, Manek-Hönninger I, Carré J Y et al. 7 W mid-infrared supercontinuum generation up to 4.7 μm in an indium-fluoride optical fiber pumped by a high-peak power thulium-doped fiber single-oscillator[J]. Optics Express, 28, 7672-7677(2020).

    [167] Wu T Y, Yang L Y, Dou Z Y et al. Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber[J]. Optics Letters, 44, 2378-2381(2019).

    [168] Gauthier J C, Fortin V, Duval S et al. In-amplifier mid-infrared supercontinuum generation[J]. Optics Letters, 40, 5247-5249(2015).

    [169] Deng K X, Yang L Y, Zhang B et al. Mid-infrared supercontinuum generation in an all-fiberized Er-doped ZBLAN fiber amplifier[J]. Optics Letters, 45, 6454-6457(2020).

    [170] Gauthier J C, Robichaud L R, Fortin V et al. Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives[J]. Applied Physics B, 124, 122(2018).

    [171] Yang L Y, Zhang B, Wu T Y et al. Watt-level mid-infrared supercontinuum generation from 2.7 to 4.25 μm in an erbium-doped ZBLAN fiber with high slope efficiency[J]. Optics Letters, 43, 3061-3064(2018).

    [172] Robichaud L R, Fortin V, Gauthier J C et al. Compact 3--8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber[J]. Optics Letters, 41, 4605-4608(2016).

    [173] Yang L Y, Zhang B, Yin K et al. Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3 μm[J]. Photonics Research, 6, 417-421(2018).

    [174] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [175] Pryamikov A D, Biriukov A S, Kosolapov A F et al. Demonstration of a waveguide regime for a silica hollow: core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm[J]. Optics Express, 19, 1441-1448(2011).

    [176] Jones A M. Nampoothiri A V V, Ratanavis A, et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion[J]. Optics Express, 19, 2309-2316(2011).

    [177] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 4.4-μm Raman laser based on hollow-core silica fibre[J]. Quantum Electronics, 47, 491-494(2017).

    [178] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609-5615(2018).

    [179] Li Z X, Huang W, Cui Y L et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 43, 4671-4674(2018).

    [180] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 gas mixture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903008(2018).

    [181] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [182] Huang W, Cui Y L, Li Z X et al. 1.56 μm and 2.86 μm Raman lasers based on gas-filled anti-resonance hollow-core fiber[J]. Chinese Optics Letters, 17, 071406(2019).

    [183] Wang Y Z, Dasa M K, Adamu A I et al. High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO2 absorption at 4.2 μm[J]. Optics Letters, 45, 1938-1941(2020).

    [185] Jones A M, Fourcade-Dutin C, Mao C et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN -filled hollow fiber lasers[J]. Proceedings of SPIE, 8237, 82373Y(2012).

    [186] Wang Z F, Belardi W, Yu F et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J]. Optics Express, 22, 21872-21878(2014).

    [187] Hassan M R A, Yu F, Wadsworth W J et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser[J]. Optica, 3, 218-221(2016).

    [188] Xu M R, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source[J]. Optics Letters, 42, 4055-4058(2017).

    [189] Zhou Z Y, Tang N, Li Z X et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers[J]. Optics Express, 26, 19144-19153(2018).

    [190] Aghbolagh F B A, Nampoothiri V, Debord B et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 44, 383-386(2019).

    [191] Cui Y L, Huang W, Wang Z F et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 6, 951-954(2019).

    [192] Zhou Z Y, Li H, Cui Y L et al. Optically pumped 4 μm CW HBr gas laser based on hollow-core fiber[J]. Acta Optica Sinica, 40, 1614001(2020).

    [193] Huang T C, He Q, She X et al. Study on thermal splicing of ZBLAN fiber to silica fiber[J]. Optical Engineering, 55, 106119(2016).

    [194] Al-Mahrous R, Caspary R, Kowalsky W. A thermal splicing method to join silica and fluoride fibers[J]. Journal of Lightwave Technology, 32, 303-308(2014).

    [195] Pei L, Dong X W, Zhao R F et al. Low loss splicing method to join silica and fluoride fibers[J]. Proceedings of SPIE, 6781, 67814O(2007).

    [196] Thapa R, Gattass R R, Nguyen V et al. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development[J]. Optics Letters, 40, 5074-5077(2015).

    [197] Uehara H, Konishi D, Goya K et al. Power scalable 30-W mid-infrared fluoride fiber amplifier[J]. Optics Letters, 44, 4777-4780(2019).

    [198] Bernier M, Trépanier F, Carrier J et al. High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask[J]. Optics Letters, 39, 3646-3649(2014).

    [199] Zou L E, Kabakova I V, Mägi E C et al. Efficient inscription of Bragg gratings in As2S3 fibers using near bandgap light[J]. Optics Letters, 38, 3850-3853(2013).

    [200] Suo R, Lousteau J, Li H X et al. Fiber Bragg gratings inscribed using 800 nm femtosecond laser and a phase mask in single-and multi-core mid-IR glass fibers[J]. Optics Express, 17, 7540-7548(2009).

    [201] Grobnic D, Mihailov S J, Smelser C W. Femtosecond IR laser inscription of Bragg gratings in single- and multimode fluoride fibers[J]. IEEE Photonics Technology Letters, 18, 2686-2688(2006).

    [202] Yu R W, Wang C Y, Benabid F et al. Robust mode matching between structurally dissimilar optical fiber waveguides[J]. ACS Photonics, 8, 857-863(2021).

    [203] Wang C Y, Yu R W, Debord B et al. Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method[J]. Optics Express, 29, 22470-22478(2021).

    [204] Goel C, Li H Z. Hassan M R A, et al. Anti-resonant hollow-core fiber fusion spliced to laser gain fiber for high-power beam delivery[J]. Optics Letters, 46, 4374-4377(2021).

    [205] Huang W, Cui Y L, Zhou Z Y et al. Towards all-fiber structure pulsed mid-infrared laser by gas-filled hollow-core fibers[J]. Chinese Optics Letters, 17, 091402(2019).

    [206] Cui Y L, Zhou Z Y, Huang W et al. Quasi-all-fiber structure CW mid-infrared laser emission from gas-filled hollow-core silica fibers[J]. Optics & Laser Technology, 121, 105794(2020).

    [207] Huang W, Cui Y L, Li X Q et al. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique[J]. Optics Express, 27, 37111-37121(2019).

    [208] Shi J, Ye X Y, Cui Y L et al. All-fiber gas cavity based on anti-resonant hollow-core fibers fabricated by splicing with end caps[J]. Photonics, 8, 371(2021).

    [209] Carcreff J, Cheviré F, Galdo E et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform[J]. Optical Materials Express, 11, 198-209(2021).

    [210] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).

    [211] Jasion G T, Bradley T D, Harrington K et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands[C]∥2020 Optical Fiber Communications Conference and Exhibition (OFC), March 8-12, 2020, San Diego, CA, USA., 19629480(2020).

    [212] Bradley T D, Jasion G T, Hayes J R et al. Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands. [C]∥45th European Conference on Optical Communication (ECOC 2019), September 22-26, 2019, Dublin, Ireland. Stevenage: IET(2019).

    Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Hao Li, Meng Wang, Zefeng Wang. Progress and Prospect of Mid-Infrared Fiber Laser Technology[J]. Acta Optica Sinica, 2022, 42(9): 0900001
    Download Citation