• Acta Optica Sinica
  • Vol. 42, Issue 9, 0900001 (2022)
Yulong Cui1、2, Zhiyue Zhou1、2, Wei Huang1、2, Zhixian Li1、2, Hao Li1、2, Meng Wang1、2、3, and Zefeng Wang1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/AOS202242.0900001 Cite this Article Set citation alerts
    Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Hao Li, Meng Wang, Zefeng Wang. Progress and Prospect of Mid-Infrared Fiber Laser Technology[J]. Acta Optica Sinica, 2022, 42(9): 0900001 Copy Citation Text show less
    Schematic diagrams of energy level transition of mid-infrared rare-earth-doped ions[26]
    Fig. 1. Schematic diagrams of energy level transition of mid-infrared rare-earth-doped ions[26]
    Structural diagram of passively cooled all-fiber laser cavity based on fiber Bragg gratings etched in core[43]
    Fig. 2. Structural diagram of passively cooled all-fiber laser cavity based on fiber Bragg gratings etched in core[43]
    Experimental setup of monolithic dual-wavelength pumped Er3+∶ZrF4 fiber laser[45]
    Fig. 3. Experimental setup of monolithic dual-wavelength pumped Er3+∶ZrF4 fiber laser[45]
    Structural diagram of 41.6 W fluoride fiber laser[22]
    Fig. 4. Structural diagram of 41.6 W fluoride fiber laser[22]
    Structural diagram of Ce3+-doped chalcogenide based mid-infrared fiber laser[57]
    Fig. 5. Structural diagram of Ce3+-doped chalcogenide based mid-infrared fiber laser[57]
    Structural diagram of black phosphorus Q-switched and mode-locked Er3+∶ZBLAN fiber laser[83]
    Fig. 6. Structural diagram of black phosphorus Q-switched and mode-locked Er3+∶ZBLAN fiber laser[83]
    Experimental setup of mode-locked Er3+-doped linear cavity fiber laser[107]
    Fig. 7. Experimental setup of mode-locked Er3+-doped linear cavity fiber laser[107]
    Structural diagram of 3 μm femtosecond fiber laser[109]
    Fig. 8. Structural diagram of 3 μm femtosecond fiber laser[109]
    Structural diagram of three-stage fiber laser system[114]
    Fig. 9. Structural diagram of three-stage fiber laser system[114]
    Schematic diagram of Raman effect
    Fig. 10. Schematic diagram of Raman effect
    Experimental setup of As2S3-based 3.77 μm cascaded Raman fiber laser[130]
    Fig. 11. Experimental setup of As2S3-based 3.77 μm cascaded Raman fiber laser[130]
    Structural diagram for InF3 and As2S3fiber cascaded supercontinuum laser[151]
    Fig. 12. Structural diagram for InF3 and As2S3fiber cascaded supercontinuum laser[151]
    Structural diagram of mid-infrared supercontinuum generation in all-fiber Er3+-doped ZBLAN fiber amplifier[169]
    Fig. 13. Structural diagram of mid-infrared supercontinuum generation in all-fiber Er3+-doped ZBLAN fiber amplifier[169]
    Principle of fiber gas laser based on intrinsic absorption transition of acetylene. (a) Schematic diagram of energy level transition; (b) absorption spectrum[184]
    Fig. 14. Principle of fiber gas laser based on intrinsic absorption transition of acetylene. (a) Schematic diagram of energy level transition; (b) absorption spectrum[184]
    Experimental setup of acetylene-filled fiber gas laser based on hollow-core fiber[176]
    Fig. 15. Experimental setup of acetylene-filled fiber gas laser based on hollow-core fiber[176]
    Experimental setup of ring cavity-based acetylene-filled fiber gas laser[187]
    Fig. 16. Experimental setup of ring cavity-based acetylene-filled fiber gas laser[187]
    Schematic diagram of carbon dioxide-filled fiber gas laser at wavelength of 4.3 μm[191]
    Fig. 17. Schematic diagram of carbon dioxide-filled fiber gas laser at wavelength of 4.3 μm[191]
    GasePumpwavelength /μmOutputwavelength /μmPulseenergy /nJAveragepower /mWSlopeefficiencyYearRef.
    C2H21.523.12, 3.166<1%2011[176]
    C2H21.533.12, 3.1676030%2014[186]
    C2H21.533.12, 3.16112033%2017[188]
    C2H21.530--1.5353.09--3.2160077016% (pulsed)13% (continuous wave)2018[189]
    N2O1.5174.6763%2019[190]
    CO224.30, 4.398219.3%2019[191]
    HBr1.973.98, 4.1712510%2020[192]
    Table 1. 0 Progress of mid-infrared fiber gas laser based on intrinsic absorption transition
    FiberPumpwavelength /nmOutputwavelength /μmOutputpower /WLaser slopeefficiency /%YearRef.
    Ho3+∶ZBLAN6402.83--2.950.01262.9%--4.4%1990[27]
    Er3+∶ZBLAN (77 K)6533.41--3.480.00853%1991[28]
    Er3+∶ZBLAN6553.480.00852.8%1992[29]
    Ho3+∶ZBLA6403.90.0011.5%1995[30]
    Ho3+∶ZBLAN (77 K)8903.90.0111997[31]
    Ho3+∶ZBLAN5323.220.0112.8%1998[32]
    Ho3+∶ZBLAN8902.930.0952%1998[33]
    Dy3+∶ ZBLAN11002.90.2754.5%2003[34]
    Ho3+/Pr3+∶ZBLAN11002.862.529%2004[24]
    Ho3+∶ZBLAN13002.960.1820%2006[36]
    Ho3+∶ZBLAN11752.950.6543%(optical to optical)2006[37]
    Ho3+/Pr3+∶ZBLAN11502.942.532%2009[35]
    Er3+∶ZBLAN9752.82414.5%(optical to optical)2009[38]
    Er3+∶ZBLAN9762.824532%(optical to optical)2009[39]
    Er3+∶ZBLAN9762.945.226.6%2009[40]
    Er3+∶ZBLAN9752.77--2.888--1112.2%2010[58]
    Er3+∶ZBLAN9762.82420.635.4%2011[41]
    Ho3+∶ZBLAN11503.0020.7712.4%2011[42]
    Er3+∶ZBLAN985, 19733.50.2616%(optical to optical)2014[23]
    Ho3+/Pr3+∶ZBLAN11502.825--2.975729%2015[59]
    Er3+∶ZBLAN9802.93830.516%(optical to optical)2015[43]
    Er3+∶ZBLAN974, 19763.441.519%2016[60]
    Er3+∶ZBLAN980, 19733.33--3.781.45@3.47 μm27%2016[44]
    Dy3+∶ZBLAN28003.040.0851%2016[61]
    Er3+∶ZBLAN976, 19763.555.626.4%(optical to optical)2017[45]
    Er3+∶ZBLAN970, 19733.52--3.680.62@3.68 μm25.14%2017[62]
    Er3+∶ZBLAN9802.82441.622.9%(optical to optical)2018[22]
    Dy3+∶ZBLAN28303.151.0673%2018[21]
    Dy3+∶ZBLAN17002.8--3.40.1721%2018[46]
    Ho3+: InF38883.920.210.2%2018[25]
    Er3+∶ZBLAN976, 19763.423.438.6%2019[47]
    Dy3+/Tm3+:ZBLAN8003.230.291%2019[48]
    Dy3+∶ZBLAN28303.2410.158%2019[49]
    Er3+∶ZrF4655, 19813.461.7231.5%2021[63]
    Ho3+∶AlF311202.8680.0565.1%2018[64]
    Ho3+/Pr3+∶AlF311502.8660.17310.4%2020[54]
    Fe2+∶ZnSe in silica29404.120.00040.1%2020[55]
    Ce3+∶chalcogenide41505.14, 5.17, 5.282021[57]
    Table 1. Progress of continuous wave rare-earth-doped mid-infrared fiber lasers
    Wavelength /μmModulationsystemPulsewidth /μsPulseenergy /μJRepetitionfrequency /kHzAveragepower /WPeakpower /WYearRef.
    2.8Active:pulsed pump0.3201002682011[68]
    2.8Active:AOM90100120129002011[69]
    2.8Passive:Fe2+∶ZnSe0.3721610.352012[70]
    2.78Passive:graphene2.91.67370.0625.82013[71]
    2.8Passive:graphene0.46.4590.38162013[72]
    2.79Passive:graphene2.12441.2111.42014[73]
    2.8Passive:black phosphorus1.187.7630.4856.52015[74]
    2.78Passive:Fe2+∶ZnSe film0.7427.98102.940.822112016[75]
    2.786Passive:SESAM2.2958.8771.734.225.72016[76]
    2.78Active:gold mirror0.127130101.310202017[77]
    2.82Active:blazed grating0.092150101.516002017[77]
    2.76--2.85Passive:Fe2+∶ZnSe1.89--0.427.743.8--243.25.162017[78]
    2.78Passive:Fe2+∶ZnSe0.523.81127.460.4867.32018[79]
    2.8Passive:SESAM1.38.1988.60.730.632018[80]
    2.8Active:AOM0.05646108212020[81]
    2.8Passive:layered Ta2NiS51.21.641020.1682021[82]
    3.46Passive:black phosphorus2.051.8366.330.120.92018[83]
    3.4--3.7Gain-switched1.025.29500.2652020[84]
    3.46Passive:SESAM2.471.458.710.0632021[85]
    Table 2. Progress of Er3+-doped Q-switched mid-infrared pulsed fiber lasers
    Wavelength /μmModulationsystemPulsewidth /μsPulseenergy /μJRepetitionfrequency /kHzAveragepower /WPeakpower /WYearRef.
    2.867Active: AOM0.0786.0640--3000.72772012[86]
    3.005Active: AOM0.3829250.725792012[87]
    3.002Active:gain-switched0.3521.7300.65622012[89]
    2.95--3.031Active: planardiffraction grating0.3--0.4115400.6432013[88]
    2.93Passive:Fe2+∶ZnSe0.820.451040.0470.552013[90]
    2.93Passive: graphene1.181.1920.10.92013[90]
    2.97Passive: SESAM1.686.6547.60.3173.962014[91]
    2.919--3.004Passive:Fe2+∶ZnSe1.23--2.355.6496.1--43.60.3374.592015[92]
    2.979Passive: topologicalinsulator Bi2Te31.373.9981.960.332.912015[93]
    2.97Passive:black phosphorus2.414.9362.50.3092.052016[94]
    2865.7Passive: WS20.00170.37131.60.04842102016[95]
    2865Passive:antimonene1.740.72156.20.1120.412018[96]
    2.92--2.96Self Q-switched1.540.004767.80.00320.0032018[97]
    2.866Passive:Carbon nanotube1.210.36178.663.40.2962019[98]
    2.8Passive:MXene ( Ti3C2Tx)1.0413.9378.121.0913.42020[99]
    2.92Gain-switched0.280.22100.0540.22020[100]
    Table 3. Progress of Ho3+-doped Q-switched mid-infrared pulsed fiber lasers
    Wavelength /μmModulation systemPulsewidth /μsPulseenergy /μJRepetitionfrequency /kHzAveragepower /WPeakpower /WYearRef.
    2.71--3.08Passive: PbSnanoparticles0.7951.51166.80.2531.92019[101]
    2.800--3.095Active:gain-switched0.532.73800.2195.152019[102]
    2.97--3.23Active: AOM0.271220--1000.125392019[103]
    2.812--3.031Passive: Fe3O4nanoparticles1.250.91230.1110.722019[104]
    Table 4. Progress of Dy3+-doped Q-switched fiber lasers
    Kind ofdoped ionWavelength /μmModulationsystemPulsewidth /psPulseenergy /nJRepetitionfrequency /MHzAveragepower /mWPeakpower /kWYearRef.
    2.8Fe2+∶ZnSe190.93500.0510.0492012[106]
    2.797SESAM608.551.750.440.142014[107]
    2.8SESAM2544.322.561.051.862015[108]
    2.8Nonlinear polarizationevolution0.2070.855.20.0443.52015[109]
    2.8Nonlinear polarizationevolution0.4973.6256.70.2066.42015[110]
    2.8Blackphosphorus4225.5240.6130.6082016[111]
    Er3+2.784Graphene420.725.40.0180.0172016[122]
    3.489Blackphosphorus346001.328.910.042018[83]
    2.8Nonlinear polarizationevolution0.2159.375.543.32019[112]
    2.8WSe2218.442.433600.42020[113]
    2.8Nonlinear polarizationevolution0.1313107317272020[123]
    2.8Nonlinear polarizationevolution0.126 to0.0161042.1802020[114]
    3.400--3.612Acousto-optictunable filter531.3836.230.2080.0262019[115]
    2.87GaAs244.927.11320.22012[116]
    2.86InAs62.7924.8690.4652014[117]
    Ho3+2.83Bi2Te368.610.4901.432015[118]
    2.876Nonlinear polarizationevolution0.187.643.1327372016[119]
    Dy3+2.97--3.30Frequency shiftedfeedback332.7891200.0822018[120]
    3.1Nonlinear polarizationevolution0.8284.8602044.22019[121]
    Table 5. Progress of mode-locked mid-infrared fiber lasers
    FiberPumpwavelength /μmOutputwavelength /μmOutput power /WConversionefficiency /%YearRef.
    As2S33.0053.340.6392013[129]
    As2S33.0053.340 and 3.7660.1128.32014[130]
    Tellurite fiber2.83--51035(2nd)2015[131]
    Tellurite fiber22--545.2@3.64 μm45.22017[137]
    Table 6. Progress of mid-infrared Raman fiber lasers
    Fiber materialPumpwavelength /μmOutputwavelength /μmAveragepower /WConversionefficiency %YearRef.
    1.550.8--4.010.5502009[143]
    1.961.9--4.313202014[157]
    1.961.9--3.821.8172014[158]
    ZBLAN1.951.9--4.110.72016[159]
    2.0--2.71.90--4.2515.250.52017[160]
    1.9--2.61.90--3.3530692019[144]
    1.9--2.61.92--4.2920.654.32020[145]
    1.980.95--3.9310.4652018[161]
    Fluorotellurite1.981.0--3.819.6602019[162]
    1.93--2.500.93--3.9522.757.22020[146]
    2.6--3.12.4--5.40.0082016[147]
    2.021.90--5.252016[163]
    1.950.75--5.101.762018[164]
    InF31.961.90--4.653602019[165]
    22.0--4.772020[166]
    1.960.8--4.711.366.52019[167]
    1.9--2.61.9--4.911.864.42020[148]
    ZBLAN, As2S3, As2Se31.561.5--10.50.0862021[149]
    ZBLAN, As2S31.552.0--6.51.132021[150]
    InF3, As2S31.9--2.72.00--5.580.06719.12021[151]
    Table 7. Progress of mid-infrared supercontinuum laser source based on non-doped fiber
    Pump wavelength /μmOutput wavelength /μmAverage power /WSlope efficiencyYearRef.
    2.752.6~4.10.154.5% (conversion efficiency)2015[168]
    2.82.7~4.20.4928.7%2018[170]
    2.2~3.12.70~4.251.7520.5%2018[171]
    3.0~4.23~80.0022016[172]
    2.4~3.22.8~3.90.417.1%2018[173]
    2.0~3.52.7~4.24.9617.2%2020[169]
    Table 8. Progress of mid-infrared supercontinuum laser source based on ion-doped ZBLAN fiber
    GasePumpwavelength /μmOutputWavelength /μmOutput powerQuantumefficiency /%YearRef.
    H21.564.40.6 kW (peak)15%2017[177]
    CH41.0642.89.5 MW (peak)40%2018[178]
    CH4-cascade1.0642.851.2 mW (average)65%2018[179]
    H2, D21.562.9, 3.3, 3.50.25 kW (peak)10% (total)2018[180]
    H21.564.421.4 W (average)53%2019[181]
    D2-cascade1.562.868.5 mW (average)42% (2nd)2019[182]
    H21.534.22131 mW (average)74%2020[183]
    Table 9. Progress of mid-infrared fiber gas laser based on intrinsic absorption transition
    Yulong Cui, Zhiyue Zhou, Wei Huang, Zhixian Li, Hao Li, Meng Wang, Zefeng Wang. Progress and Prospect of Mid-Infrared Fiber Laser Technology[J]. Acta Optica Sinica, 2022, 42(9): 0900001
    Download Citation