• Chinese Journal of Lasers
  • Vol. 48, Issue 15, 1501003 (2021)
Xing Fu1,2,*, Tinghao Liu1,2, Xinxing Lei1,2, Mali Gong1,2, and Qiang Liu1,2
Author Affiliations
  • 1Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.1501003 Cite this Article Set citation alerts
    Xing Fu, Tinghao Liu, Xinxing Lei, Mali Gong, Qiang Liu. High Energy Diode-Pumped Rep-Rated Nanosecond Solid-State Laser[J]. Chinese Journal of Lasers, 2021, 48(15): 1501003 Copy Citation Text show less
    References

    [1] Spaeth M L, Manes K R, Kalantar D H et al. Description of the NIF laser[J]. Fusion Science and Technology, 69, 25-145(2016).

    [2] Zhu J Q, Chen S H, Zheng Y X et al. Review on development of Shenguang-Ⅱ laser facility[J]. Chinese Journal of Lasers, 46, 0100002(2019).

    [3] Swenson E J, Sun Y L, Dunsky C M. Laser micromachining in the microelectronics industry: a historical overview[J]. Proceedings of SPIE, 4095, 118-132(2000).

    [4] Bayramian A, Aceves S, Anklam T et al. Compact, efficient laser systems required for laser inertial fusion energy[J]. Fusion Science and Technology, 60, 28-48(2011).

    [5] Wang M Z, Ding L, Luo Y M et al. Recent progress of laser diode-pumped solid-state laser drivers for inertial fusion energy[J]. Laser & Optoelectronics Progress, 45, 56-63(2008).

    [6] Anklam T M, Dunne M, Meier W R et al. LIFE: the case for early commercialization of fusion energy[J]. Fusion Science and Technology, 60, 66-71(2011).

    [7] Xiao K B, Yuan X D, Jiang X Y et al. Research status of conceptual design of diode-pumped solid-state laser driver for LIFE[J]. Laser & Optoelectronics Progress, 52, 040001(2015).

    [8] le Garrec B, Atzeni S, Batani D et al. HiPER laser: from capsule design to the laser reference design[J]. Proceedings of SPIE, 7916, 79160F(2011).

    [9] Xiao K B, Yuan X D, Jiang X Y et al. Research status of conceptual designs of diode-pumped solid-state laser driver for HiPER[J]. Laser & Optoelectronics Progress, 52, 080005(2015).

    [10] Kawanaka J, Yamakawa K, Tsubakimoto K et al. Generation of energetic beam ultimate (GENBU) laser - main laser -[J]. The Review of Laser Engineering, 36, 1056-1058(2008).

    [11] Drake R P. A journey through high-energy-density physics[J]. Nuclear Fusion, 59, 035001(2019).

    [14] Danson C N, Haefner C, Bromage J et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, 172-225(2019).

    [15] Perry M D, Sefcik J A, Cowan T et al. Hard X-ray production from high intensity laser solid interactions[J]. Review of Scientific Instruments, 70, 265-269(1999).

    [16] Ridgers C P, Kirk J G, Duclous R et al. Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions[J]. Journal of Computational Physics, 260, 273-285(2014).

    [17] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [18] Hooker S M. Developments in laser-driven plasma accelerators[J]. Nature Photonics, 7, 775-782(2013).

    [19] Hu Y T, Zhang H, Deng H X. Review of research developments and important applications of laser-driven ion acceleration[J]. Chinese Journal of Lasers, 48, 0401006(2021).

    [20] Patera V, Prezado Y, Azaiez F et al. Biomedical research programs at present and future high-energy particle accelerators[J]. Frontiers in Physics, 8, 380(2020).

    [21] Wang X L, Xu Z Y, Luo W et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator[J]. Physics of Plasmas, 24, 093105(2017).

    [22] Brenner C M, Mirfayzi S R, Rusby D R et al. Laser-driven X-ray and neutron source development for industrial applications of plasma accelerators[J]. Plasma Physics and Controlled Fusion, 58, 014039(2016).

    [23] Clauer A H. Laser shock peening, the path to production[J]. Metals, 9, 626(2019).

    [24] Gonçalvès-Novo T, Albach D, Vincent B et al. 14 J/2 Hz Yb 3+∶YAG diode pumped solid state laser chain[J]. Optics Express, 21, 855-866(2013).

    [25] Mason P, Divoký M, Ertel K et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 4, 438-439(2017).

    [26] Gonçalvès-Novo T, Vincent B, Chanteloup J C. From 10 to 30 joules with the Lucia laser system: update on current performance and cryogenic amplifier development[C]. //Advanced Solid State Lasers 2013, October 27-November 1, 2013, Paris, France, ATu3A, 19(2013).

    [27] Divoky M, Tokita S, Hwang S et al. 1-J operation of monolithic composite ceramics with Yb∶YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation[J]. Optics Letters, 40, 855-858(2015).

    [28] Ogino J, Tokita S, Kitajima S et al. 10 J operation of a conductive-cooled Yb∶YAG active-mirror amplifier and prospects for 100 Hz operation[J]. Optics Letters, 46, 621-624(2021).

    [29] Sekine T, Kurita T, Kurata M et al. Development of a 100-J DPSSL as a laser processing platform in the TACMI consortium[J]. High Energy Density Physics, 36, 100800(2020).

    [30] Bayramian A, Armstrong J, Beer G et al. High-average-power femto-petawatt laser pumped by the Mercury laser facility[J]. Journal of the Optical Society of America B, 25, B57-B61(2008).

    [31] Haefner C L, Bayramian A, Betts S et al. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications[J]. Proceedings of SPIE, 10241, 1024102(2017).

    [32] Yasuhara R, Kawashima T, Sekine T et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd∶glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 33, 1711-1713(2008).

    [33] Liu T H, Feng T, Sui Z et al. 50 mm-aperture Nd∶LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz[J]. Optics Express, 27, 15595-15603(2019).

    [34] Li P L, Fu X, Liu Q et al. Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser[J]. Journal of the Optical Society of America B, 30, 2161-2167(2013).

    [35] Fu X, Liu Q, Li P L et al. Wavefront aberration induced by beam passage through a water-convection-cooled Nd∶YAG thin disk[J]. Journal of Optics, 15, 055704(2013).

    [36] Jiang X Y, Wang Z G, Yan X W et al. LD end-pumped 12 J-10 Hz Nd∶YAG pulse laser[J]. Proceedings of SPIE, 11333, 113330M(2019).

    [37] Fan Z W, Qiu J S, Kang Z J et al. High beam quality 5 J, 200 Hz Nd∶YAG laser system[J]. Light, Science & Applications, 6, e17004(2017).

    [38] Ebbers C, Caird J, Moses E et al. The mercury laser moves toward practical laser fusion[J]. Laser Focus World, 45, 51-52, 55-56(2009).

    [39] Bayramian A, Armstrong P, Ault E et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 52, 383-387(2007).

    [40] Bayramian A J, Campbell R W, Ebbers C A et al. A laser technology test facility for laser inertial fusion energy (LIFE)[J]. Journal of Physics: Conference Series, 244, 032016(2010).

    [41] Erlandson A C, Aceves S M, Bayramian A J et al. Comparison of Nd∶phosphate glass, Yb∶YAG and Yb∶S-FAP laser beamlines for laser inertial fusion energy (LIFE)[J]. Optical Materials Express, 1, 1341-1352(2011).

    [42] Bayramian A, Armstrong P, Ault E et al. The mercury project: a high average power, gas-cooled laser with frequency conversion and wavefront correction[C]. //Advanced Solid-State Photonics 2006, January 29-February 1, 2006, Incline Village, Nevada, United States, MA4(2006).

    [43] Bayramian A. Mercury project overview[R]. HEC DPSSL Workshop(2006).

    [44] Banerjee S, Ertel K, Mason P D et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb∶YAG laser[J]. Optics Express, 23, 19542-19551(2015).

    [45] Banerjee S, Mason P D, Ertel K et al. 100 J-level nanosecond pulsed diode pumped solid state laser[J]. Optics Letters, 41, 2089-2092(2016).

    [46] Ertel K, Banerjee S, Mason P D et al. Optimising the efficiency of pulsed diode pumped Yb∶YAG laser amplifiers for ns pulse generation[J]. Optics Express, 19, 26610-26626(2011).

    [47] de Vido M, Mason P D, Fitton M et al. Modelling and measurement of thermal stress-induced depolarisation in high energy, high repetition rate diode-pumped Yb∶YAG lasers[J]. Optics Express, 29, 5607-5623(2021).

    [48] Slezak O, Lucianetti A, Mocek T. Efficient ASE management in disk laser amplifiers with variable absorbing clads[J]. IEEE Journal of Quantum Electronics, 50, 1-9(2014).

    [49] Divoky M, Pilar J, Hanus M et al. Performance comparison of Yb∶YAG ceramics and crystal gain material in a large-area, high-energy, high average-power diode-pumped laser[J]. Optics Express, 28, 3636-3646(2020).

    [50] Mason P, Banerjee S, Smith J et al. Development of a 100 J, 10 Hz laser for compression experiments at the high energy density instrument at the European XFEL[J]. High Power Laser Science and Engineering, 6, e65(2018).

    [51] Ertel K, Banerjee S, Boyle A et al. Design study for a kW-class, multi-TW, ps laser[C]. //Advanced Solid State Lasers 2017, October 1-5, 2017, Nagoya, Aichi, Japan, JTu2A, 44(2017).

    [52] Mason P, Banerjee S, Smith J et al. Efficient operation of a high energy Yb∶YAG DPSSL amplifier[C]. //The European Conference on Lasers and Electro-Optics 2019, June 23-27, 2019, Munich, Germany, ca_9_2(2019).

    [53] Saumyabrata B, Paul M, Jonathan P et al. Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications[J]. High Power Laser Science and Engineering, 8, 77-79(2020).

    [54] de Vido M, Ertel K, Wojtusiak A et al. Design of a 10 J, 100 Hz diode-pumped solid state laser[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria, JTu3A, 14(2019).

    [55] Spinka T M, Haefner C. High-average-power ultrafast lasers[J]. Optics and Photonics News, 28, 26-33(2017).

    [56] Haefner C L. High average power, scalable, all diode-pumped solid state petawatt laser system HAPLS: a robust driver for high intensity laser matter interactions enabling precision science and commercial applications[J]. The Review of Laser Engineering, 46, 138-141(2018).

    [57] Fulkerson E S, Telford S, Deri R et al. Pulsed power system for the HAPLS diode pumped laser system[C]. //2015 IEEE Pulsed Power Conference (PPC), May 31-June 4, 2015, Austin, TX, USA., 1-6(2015).

    [58] Seaver L L. LLNL wins three R & D 100 awards[EB/OL]. (2015-11-16)[2021-03-10]. https://www.llnl.gov/news/llnl-wins-three-rd-100-awards

    [59] Bayramian A, Bopp R, Borden M et al. High energy, high average power, DPSSL system for next generation petawatt laser systems[C]. //Conference on Lasers and Electro-Optics 2016, June 5-10, 2016, San Jose, California, Untied States, STu3M, 2(2016).

    [60] Bayramian A, Bopp R, Deri B et al. High-energy diode-pumped solid-state laser (DPSSL) for high-repetition-rate petawatt laser systems[C]. //High Intensity Lasers and High Field Phenomena 2016, March 20-22, 2016, Long Beach, California, United States, HT1B, 5(2016).

    [61] Spinka T, Sistrunk E, Bayramian A et al. Commissioning results of the world’s first diode-pumped 10 Hz PW laser[C]. //European Quantum Electronics Conference 2017, June 25-29, 2017, Munich, Germany, PD_2_7(2017).

    [62] Sistrunk E, Spinka T, Bayramian A et al. All diode-pumped, high-repetition-rate advanced petawatt laser system (HAPLS)[C]. //CLEO: Science and Innovations 2017, May 14-19, 2017, San Jose, California, United States, STh1L, 2(2017).

    [63] Sekine T, Takeuchi Y, Kurita T et al. Development of cryogenic Yb∶YAG ceramics amplifier for over 100 J DPSSL[J]. Proceedings of SPIE, 10082, 100820U(2017).

    [64] Sekine T, Takeuchi Y, Hatano Y et al. 64 J output energy in 10 ns pulse from cryogenic Yb∶YAG ceramics laser[C]. //CLEO: Science and Innovations 2017, May 14-19, 2017, San Jose, California, United States, STh1L, 4(2017).

    [65] Kurata M, Sekine T, Hatano Y et al. Development of a 100 J class cryogenically cooled multi-disk Yb∶YAG ceramics laser[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria, ATu5A, 3(2019).

    [66] Kabeya Y, Morita T, Hatano Y et al. Development of a 10-J, 10-Hz laser amplifier system with cryo-cooled Yb∶YAG ceramics using active-mirror method[J]. Proceedings of SPIE, 10896, 108960M(2019).

    [67] Morita T, Sekine T, Takeuchi Y et al. Development of compact LD module for 10 J at 10 Hz cryocooled Yb∶ YAG ceramics active mirror laser amplifier[C]. //Advanced Solid State Lasers 2017, October 1-5, 2017, Nagoya, Aichi, Japan, JTu2A, 31(2017).

    [68] Mizuta Y, Takeuchi Y, Sekine T et al. Low temperature gas cooling technique for a high efficiency 100 J class ceramics laser amplifier[C]. //Advanced Solid State Lasers 2017, October 1-5, 2017, Nagoya, Aichi Japan, JTu2A, 36(2017).

    [69] Albach D, le Touzé G, Chanteloup J C. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers[J]. Optics Express, 19, 8413-8422(2011).

    [70] Albach D, Chanteloup J C, le Touzé G. Influence of ASE on the gain distribution in large size, high gain Yb 3+∶YAG slabs[J]. Optics Express, 17, 3792-3801(2009).

    [71] Bourdet G L, Gouedard C. Theoretical analysis of an end-pumped Yb∶YAG active mirror thin-disk amplifier with a longitudinal doping concentration gradient[J]. Applied Optics, 53, 7556-7565(2014).

    [72] Lucianetti A, Albach D, Chanteloup J C. Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures[J]. Optics Express, 19, 12766-12780(2011).

    [73] Marrazzo S, Gonçalves-Novo T, Vincent B et al. High gain low temperature active mirror Yb∶YAG laser amplifier qualification[C]. //Advanced Solid State Lasers 2015, October 4-9, 2015, Berlin, Germany, AM5A, 18(2015).

    [74] Marrazzo S, Gonçalvès-Novo T, Millet F et al. Low temperature diode pumped active mirror Yb 3+∶YAG disk laser amplifier studies[J]. Optics Express, 24, 12651-12660(2016).

    [75] Albach D, Arzakantsyan M, Bourdet G et al. Current status of the LUCIA laser system[J]. Journal of Physics: Conference Series, 244, 032015(2010).

    [76] Gonçalvès-Novo T, Marrazzo S, Vincent B et al. Low temperature active mirror Yb∶YAG laser amplifier gain studies[C]. //CLEO: Science and Innovations 2014, June 8-13, 2014, San Jose, California, United States, SM1F, 2(2014).

    [77] Albach D, Chanteloup J C. Large size crystalline vs. co-sintered ceramic Yb 3+∶YAG disk performance in diode pumped amplifiers[J]. Optics Express, 23, 570-579(2015).

    [78] Furuse H, Kawanaka J, Takeshita K et al. Total-reflection active-mirror laser with cryogenic Yb∶YAG ceramics[J]. Optics Letters, 34, 3439-3441(2009).

    [79] Furuse H, Kawanaka J. 1 J,100 Hz GENBU: front end laser system with multi-TRAMs[C]. //The 7nd High Energy Class Diode Pumped Solid-State Laser workshop (HEC-DPSSL), Livermore, USA, Sept.(2012).

    [80] Furuse H, Kawanaka J, Miyanaga N et al. Zig-zag active-mirror laser with cryogenic Yb 3+∶YAG/YAG composite ceramics[J]. Optics Express, 19, 2448-2455(2011).

    [81] Tokita S, Divoky M, Furuse H et al. Generation of 500-mJ nanosecond pulses from a diode-pumped Yb∶YAG TRAM laser amplifier[J]. Optical Materials Express, 4, 2122-2126(2014).

    [82] Furuse H, Chosrowjan H, Kawanaka J et al. ASE and parasitic lasing in thin disk laser with anti-ASE cap[J]. Optics Express, 21, 13118-13124(2013).

    [83] Furuse H, Kawanaka J, Miyanaga N et al. Output characteristics of high power cryogenic Yb∶YAG TRAM laser oscillator[J]. Optics Express, 20, 21739-21748(2012).

    [84] Furuse H, Sakurai T, Chosrowjan H et al. Amplification characteristics of a cryogenic Yb 3+∶YAG total-reflection active-mirror laser[J]. Applied Optics, 53, 1964-1969(2014).

    [85] Yasuhara R, Furuse H, Iwamoto A et al. Evaluation of thermo-optic characteristics of cryogenically cooled Yb∶YAG ceramics[J]. Optics Express, 20, 29531-29539(2012).

    [86] Ogino J, Tokita S, Kitajima S et al. Toward 10 J, 100 Hz active-mirror amplifier[C]. //Advanced Solid State Lasers 2020, October 13-16, 2020, Washington, D.C., United States, JTh6A, 17(2020).

    [87] Ogino J, Tokita S, Li Z Y et al. Key technologies for the development of 100 J, 100 Hz cryogenically-cooled active-mirror amplifier[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany.(2019).

    [88] Fu X, Liu Q, Li P L et al. High-efficiency 2 J, 20 Hz diode-pumped Nd∶YAG active-mirror master oscillator power amplifier system[J]. Applied Physics Express, 8, 092702(2015).

    [89] Fu X, Liu T H, Deng X Z et al. Ultrahigh-efficiency 4-J, 10-Hz, Nd∶YAG quasi-continuous-wave active mirror oscillator[J]. Applied Physics B, 121, 453-457(2015).

    [90] Liu Q, Gong M L, Liu T H et al. Efficient sub-joule energy extraction from a diode-pumped Nd∶LuAG amplifier seeded by a Nd∶YAG laser[J]. Optics Letters, 41, 5322-5325(2016).

    [91] Liu T H, Sui Z, Chen L et al. 12 J, 10 Hz diode-pumped Nd∶YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 25, 21981-21992(2017).

    [92] Fu X, Li P L, Liu Q et al. 3 kW liquid-cooled elastically-supported Nd∶YAG multi-slab CW laser resonator[J]. Optics Express, 22, 18421-18432(2014).

    [93] Fu X, Liu Q, Li P L et al. Numerical simulation of 30-kW class liquid-cooled Nd∶YAG multi-slab resonator[J]. Optics Express, 23, 18458-18470(2015).

    [94] Gong M L, Sui Z, Liu Q et al. Design of ultrahigh energy laser amplifier system with high storage energy extraction[J]. Applied Optics, 52, 394-399(2013).

    [95] Liu T H, Liu Q, Sui Z et al. Spatiotemporal characterization of laser pulse amplification in double-pass active mirror geometry[J]. High Power Laser Science and Engineering, 8, e30(2020).

    [96] Zheng J G, Jiang X Y, Yan X W et al. Progress of the 10 J water-cooled Yb∶YAG laser system in RCLF[J]. High Power Laser Science and Engineering, 2, e27(2014).

    [97] Jiang X Y, Wang Z G, Zheng J G et al. Thermal management of water-cooled 10 Hz Yb∶YAG laser amplifier[J]. High Power Laser and Particle Beams, 32, 011010(2019).

    [98] Kawashima T, Kanabe T, Matsumoto O et al. Development of diode-pumped solid-state laser HALNA for fusion reactor driver[J]. Electrical Engineering in Japan, 155, 27-35(2006).

    [99] Sekine T, Sakai H, Takeuchi Y et al. High efficiency 12.5 J second-harmonic generation from CsLiB6O10 nonlinear crystal by diode-pumped Nd∶glass laser[J]. Optics Express, 21, 8393-8400(2013).

    [100] Kawashima T, Kurita T, Matsumoto O et al. 20-J diode-pumped zig-zag slab laser with 2-GW peak power and 200-W average power[C]. //Advanced Solid-State Photonics 2005, February 6-9, 2005, Vienna, Austria, TuB44(2005).

    [101] Sekine T, Matsuoka S I, Yasuhara R et al. 84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd∶YLF ring amplifier with phase-conjugated wavefront corrector[J]. Optics Express, 18, 13927-13934(2010).

    [102] Matsumoto O, Kurita T, Yasuhara R et al. Analysis of parasitic oscillation and evaluation of amplifier module of zig-zag slab laser system[J]. Japanese Journal of Applied Physics, 47, 5441-5449(2008).

    [103] Kurita T, Kawashima T, Ikegawa T et al. Thermally-edge-controlled slab laser for inertial fusion energy and applications[C]. //(CLEO). Conference on Lasers and Electro-Optics, 2005, May 22-27, 2005, Baltimore, MD, USA., 168-170(2005).

    [104] Guo G Y, Chen Y Z, He J G et al. Diode-pumped large-aperture Nd∶YAG slab amplifier for high energy nanosecond pulse laser[J]. Optics Communications, 400, 50-54(2017).

    [105] Qiu J S, Tang X X, Fan Z W et al. 200 Hz repetition frequency joule-level high beam quality Nd∶YAG nanosecond laser[J]. Optics Communications, 368, 68-72(2016).

    [106] Yu X, Dong L Z, Lai B H et al. Adaptive aberration correction of a 5 J/6.6 ns/200 Hz solid-state Nd∶YAG laser[J]. Optics Letters, 42, 2730-2733(2017).

    Xing Fu, Tinghao Liu, Xinxing Lei, Mali Gong, Qiang Liu. High Energy Diode-Pumped Rep-Rated Nanosecond Solid-State Laser[J]. Chinese Journal of Lasers, 2021, 48(15): 1501003
    Download Citation