• Chinese Journal of Lasers
  • Vol. 48, Issue 15, 1501003 (2021)
Xing Fu1,2,*, Tinghao Liu1,2, Xinxing Lei1,2, Mali Gong1,2, and Qiang Liu1,2
Author Affiliations
  • 1Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.1501003 Cite this Article Set citation alerts
    Xing Fu, Tinghao Liu, Xinxing Lei, Mali Gong, Qiang Liu. High Energy Diode-Pumped Rep-Rated Nanosecond Solid-State Laser[J]. Chinese Journal of Lasers, 2021, 48(15): 1501003 Copy Citation Text show less
    Preferred geometries of main amplifier in high energy rep-rated nanosecond DPSSL. (a) Multi-slab; (b) active mirror; (c) zigzag slab
    Fig. 1. Preferred geometries of main amplifier in high energy rep-rated nanosecond DPSSL. (a) Multi-slab; (b) active mirror; (c) zigzag slab
    Mercury multi-slab design with room temperature high speed gas cooling[43]. (a) Schematic; (b) photo
    Fig. 2. Mercury multi-slab design with room temperature high speed gas cooling[43]. (a) Schematic; (b) photo
    Thermally induced wavefront aberration of single gain module in Mercury main amplifier[43]. (a) Simulated result; (b) experimental result
    Fig. 3. Thermally induced wavefront aberration of single gain module in Mercury main amplifier[43]. (a) Simulated result; (b) experimental result
    Gain module of DiPOLE main amplifier[47]. (a) Large-aperture Yb∶YAG/Cr∶YAG ceramic; (b) multi-slab amplifier head with cryogenic gas cooling
    Fig. 4. Gain module of DiPOLE main amplifier[47]. (a) Large-aperture Yb∶YAG/Cr∶YAG ceramic; (b) multi-slab amplifier head with cryogenic gas cooling
    Output thermal depolarization patterns corresponding to different input polarization states. (a) Experimental results; (b) simulation results[47]
    Fig. 5. Output thermal depolarization patterns corresponding to different input polarization states. (a) Experimental results; (b) simulation results[47]
    Schematic of DiPOLE100X system[50]
    Fig. 6. Schematic of DiPOLE100X system[50]
    Schematic of HAPLS system[55]
    Fig. 7. Schematic of HAPLS system[55]
    Photo of HILADS pump array[58]
    Fig. 8. Photo of HILADS pump array[58]
    Fundamental frequency, frequency doubled pump light and short pulse main laser output curve[61] (inset: output pulse shape stability curve and photo of operating laser)
    Fig. 9. Fundamental frequency, frequency doubled pump light and short pulse main laser output curve[61] (inset: output pulse shape stability curve and photo of operating laser)
    Layout of 100 J Hamamatsu system[29]
    Fig. 10. Layout of 100 J Hamamatsu system[29]
    Photo of the cryogenic He-gas circulation cooling system[68]
    Fig. 11. Photo of the cryogenic He-gas circulation cooling system[68]
    Photo and schematic of pump coupling device of LUCIA system[24]
    Fig. 12. Photo and schematic of pump coupling device of LUCIA system[24]
    Three-dimensional temperature distribution and thermal deformation model results [77]. (a) Yb∶ YAG crystal; (b) Cr4+/Yb3+∶YAG co-sintered ceramic
    Fig. 13. Three-dimensional temperature distribution and thermal deformation model results [77]. (a) Yb∶ YAG crystal; (b) Cr4+/Yb3+∶YAG co-sintered ceramic
    Schematic of TRAM configuration[78]
    Fig. 14. Schematic of TRAM configuration[78]
    Schematic of multi-TRAM configuration[79]
    Fig. 15. Schematic of multi-TRAM configuration[79]
    CcAMA layout[28]. (a) Conceptual design of 100 J 100 Hz amplifier; (b) three-dimensional model of active-mirror head
    Fig. 16. CcAMA layout[28]. (a) Conceptual design of 100 J 100 Hz amplifier; (b) three-dimensional model of active-mirror head
    Nd∶YAG-Nd∶LuAG hybrid amplifier[90]. (a) Two-gain medium emission spectrum; (b) amplification chain output curve
    Fig. 17. Nd∶YAG-Nd∶LuAG hybrid amplifier[90]. (a) Two-gain medium emission spectrum; (b) amplification chain output curve
    Layout of 10 J large-aperture hybrid active mirror chain[33]
    Fig. 18. Layout of 10 J large-aperture hybrid active mirror chain[33]
    Spatiotemporal characterization of amplified pulse in active mirror geometry[95]. (a)(c) Spatiotemporal information of gain window for backward-and forward-propagating pulses; (b) pulse segments that overlap at a certain time
    Fig. 19. Spatiotemporal characterization of amplified pulse in active mirror geometry[95]. (a)(c) Spatiotemporal information of gain window for backward-and forward-propagating pulses; (b) pulse segments that overlap at a certain time
    Astigmatism measurement results[36]. (a) Before adjustment; (b) after adjustment
    Fig. 20. Astigmatism measurement results[36]. (a) Before adjustment; (b) after adjustment
    Schematic of HALNA system[100]
    Fig. 21. Schematic of HALNA system[100]
    TECS technique[32]. (a) Layout; (b) single-pass optical path difference along slab width of non-TECS mode (dashed line) and TECS mode (solid line); (c) optical path difference of non-TECS and TECS modes under different repetition rate
    Fig. 22. TECS technique[32]. (a) Layout; (b) single-pass optical path difference along slab width of non-TECS mode (dashed line) and TECS mode (solid line); (c) optical path difference of non-TECS and TECS modes under different repetition rate
    Schematic of 5 J, 200 Hz system [37]
    Fig. 23. Schematic of 5 J, 200 Hz system [37]
    Gain mediumSaturation fluence /(J·cm-2)Radiativelifetime /msThermal conductivity /(W·m-1·K-1)Emissionwavelength /nm
    Yb∶YAG (RT)9.60.9514.001030
    Yb∶YAG (CR)4.31.0016.601030
    Yb∶S-FAP (RT)3.01.102.001047
    Nd∶glass (APG-1, RT)5.80.390.831053
    Nd∶LuAG (RT)1.90.289.601064
    Nd∶YAG (RT)0.60.2314.001064
    Table 1. Parameter comparison of typical gain media of high energy laser system
    GeometryProjectEnergy,repetition rateYearGain medium(wavelength)CoolingtemperaturePassagenumberReference
    Multi-slabMercury61 J, 10 Hz2006Yb∶S-FAP(1047 nm)RT, heliumgas4[30]
    DiPOLE105 J, 10 Hz2017Yb∶YAG(1030 nm)150 K, heliumgas4[25]
    HAPLS97 J, 3.3 Hz2019Nd∶glass(1053 nm)RT, heliumgas4[31]
    Hamamatsu117 J, 0.05 Hz2017Yb∶YAG (1030 nm)175 K, heliumgas2[29]
    Active mirrorLUCIA14 J, 2 Hz2013Yb∶YAG(1030 nm)RT, water4[24]
    CcAMA9.3 J, 33.3 Hz2021Yb∶YAG(1030 nm)78 K,liquid nitrogen2[28]
    DAMAC100 J, 10 Hz2021Nd∶LuAG(1064 nm)RT, water2--
    CAEP12 J, 10 Hz2019Nd∶YAG(1064 nm)RT, water2[36]
    Zigzag slabHALNA21.3 J, 10 Hz2008Nd∶glass(1053 nm)RT, water4[32]
    CAS5 J, 200 Hz2017Nd∶YAG(1064 nm)RT, water2[37]
    Table 2. Representative achievements of high energy repetition rate nanosecond DPSSL
    Xing Fu, Tinghao Liu, Xinxing Lei, Mali Gong, Qiang Liu. High Energy Diode-Pumped Rep-Rated Nanosecond Solid-State Laser[J]. Chinese Journal of Lasers, 2021, 48(15): 1501003
    Download Citation