• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011018 (2021)
Xuyi Xiao, Liuya Chen, Xuezhi Zhang, Chong Wang, Ruijun Lan, Cheng Ren, and Dezhong Cao*
Author Affiliations
  • School of Opto-Electronic Information Science and Technology, Yantai University, Yantai, Shandong 264005, China
  • show less
    DOI: 10.3788/LOP202158.1011018 Cite this Article Set citation alerts
    Xuyi Xiao, Liuya Chen, Xuezhi Zhang, Chong Wang, Ruijun Lan, Cheng Ren, Dezhong Cao. Review on Single-Pixel Imaging and Its Probability Statistical Analysis[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011018 Copy Citation Text show less
    References

    [1] Takhar D, Laska J N, Wakin M B et al. A new compressive imaging camera architecture using optical-domain compression[J]. Proceedings of SPIE, 6065, 606509(2006).

    [2] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [3] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [4] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [5] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [6] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [7] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [8] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [9] Valencia A, Scarcelli G, D'Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [10] Ferri F, Magatti D, Gatti A et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 94, 183602(2005).

    [11] Zhang D, Zhai Y H, Wu L A et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).

    [12] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005).

    [13] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [14] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [15] Chan W L, Moravec M L, Baraniuk R G et al. Terahertz imaging with compressed sensing and phase retrieval[J]. Optics Letters, 33, 974-976(2008).

    [16] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [17] Radwell N, Mitchell K J, Gibson G M et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014).

    [18] Klyshko D N. Photon and nonlinear optics[M]. New York: Gordon and Breach Science(1988).

    [19] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [20] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).

    [21] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [22] Bennink R S, Bentley S J, Boyd R W et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 92, 069901(2004).

    [23] Wang K G, Cao D Z. Subwavelength coincidence interference with classical thermal light[J]. Physical Review A, 70, 041801(2004).

    [24] Xiong J, Cao D Z, Huang F et al. Experimental observation of classical subwavelength interference with a pseudothermal light source[J]. Physical Review Letters, 94, 173601(2005).

    [25] Cai Y J, Zhu S Y. Ghost interference with partially coherent radiation[J]. Optics Letters, 29, 2716-2718(2004).

    [26] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [27] Luo K H, Chen X H, Liu Q et al. Nonlocal Talbot self-imaging with incoherent light[J]. Physical Review A, 82, 033803(2010).

    [28] Li H, Xiong J, Zeng G H. Lensless ghost imaging for moving objects[J]. Optical Engineering, 50, 127005(2011).

    [29] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [30] Dixon P B, Howland G A, Chan K W C et al. Quantum ghost imaging through turbulence[J]. Physical Review A, 83, 051803(2011).

    [31] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 98, 111115(2011).

    [32] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence[J]. Physical Review A, 84, 063824(2011).

    [33] Liu X F, Yao X R, Chen X H et al. Thermal light optical coherence tomography for transmissive objects[J]. Journal of the Optical Society of America A, 29, 1922-1926(2012).

    [34] Tian N, Guo Q, Wang A et al. Fluorescence ghost imaging with pseudothermal light[J]. Optics Letters, 36, 3302-3304(2011).

    [35] Mizutani Y, Shibuya K, Iwata T et al. Fluorescence microscope by using computational ghost imaging[J]. MATEC Web of Conferences, 32, 05001(2015).

    [36] Studer V, Bobin J, Chahid M et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, E1679-E1687(2012).

    [37] Liu X L, Shi J H, Wu X Y et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 5012(2018).

    [38] Liu X L, Shi J H, Sun L et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132-8144(2020).

    [39] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018).

    [40] Zhou C, Wang G C, Huang H Y et al. Edge detection based on joint iteration ghost imaging[J]. Optics Express, 27, 27295-27307(2019).

    [41] Sun S, Liu W T, Gu J H et al. Ghost imaging normalized by second-order coherence[J]. Optics Letters, 44, 5993-5996(2019).

    [42] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019).

    [43] Pan L, Deng C J, Bo Z W et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging[J]. Optics Express, 28, 20808-20816(2020).

    [44] Fu C K, Zheng H B, Wang G et al. Three-dimensional imaging via time-correlated single-photon counting[J]. Applied Sciences, 10, 1930(2020).

    [45] Ye J T, Huang X, Li Z P et al. Compressed sensing for active non-line-of-sight imaging[J]. Optics Express, 29, 1749-1763(2021).

    [46] Luo K H, Huang B Q, Zheng W M et al. Nonlocal imaging by conditional averaging of random reference measurements[J]. Chinese Physics Letters, 29, 074216(2012).

    [47] Meyers R E, Deacon K S, Shih Y. Positive-negative turbulence-free ghost imaging[J]. Applied Physics Letters, 100, 131114(2012).

    [48] Li G L, Yang Z H, Yan R T et al. Iterative normalized correspondence ghost imaging[J]. Optik, 161, 20-26(2018).

    [49] Wang Y L, Zhou Y N, Wang S X et al. Enhancement of spatial resolution of ghost imaging via localizing and thresholding[J]. Chinese Physics B, 28, 044202(2019).

    [50] Leng J, Yu W K, Wang S F. Formation mechanism of correspondence imaging with thermal light[J]. Physical Review A, 101, 033835(2020).

    [51] Wen J M. Forming positive-negative images using conditioned partial measurements from reference arm in ghost imaging[J]. Journal of the Optical Society of America A, 29, 1906-1911(2012).

    [52] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225-6230(2015).

    [53] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 4, 240-244(2016).

    [54] Wu L A, Luo K H et al. Two-photon imaging with entangled and thermal light[J]. AIP Conference Proceedings, 1384, 223(2011).

    [55] Yang H, Wu S, Wang H B et al. Probability theory in conditional-averaging ghost imaging with thermal light[J]. Physical Review A, 98, 053853(2018).

    [56] Cao D Z, Li Q C, Zhuang X C et al. Ghost images reconstructed from fractional-order moments with thermal light[J]. Chinese Physics B, 27, 123401(2018).

    [57] Dou L Y, Xu D Q, Cao D Z et al. Demonstration of correlated imaging enhancement with divergence enlargement algorithms[J]. Optics Communications, 430, 68-72(2019).

    [58] Dou L Y, Cao D Z, Gao L et al. Dark-field ghost imaging[J]. Optics Express, 28, 37167-37176(2020).

    [59] Wang C, Lan R J, Ren C et al. Computational ghost imaging with discrete stochastic sources[J]. Physical Review A, 101, 033819(2020).

    [60] Khakimov R I, Henson B M, Shin D K et al. Ghost imaging with atoms[J]. Nature, 540, 100-103(2016).

    [61] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X-rays[J]. Physical Review Letters, 117, 113901(2016).

    [62] Pelliccia D, Rack A, Scheel M et al. Erratum: experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 219902(2016).

    [63] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822(2017).

    [64] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [65] Li S, Cropp F, Kabra K et al. Electron ghost imaging[J]. Physical Review Letters, 121, 114801(2018).

    [66] Kingston A M, Myers G R, Pelliccia D et al. Neutron ghost imaging[J]. Physical Review A, 101, 053844(2020).

    [67] He Y H, Huang Y Y, Zeng Z R et al. Single-pixel imaging with neutrons[J]. Science Bulletin, 66, 133-138(2021).

    [68] Abouraddy A F, Saleh B E A, Sergienko A V et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001).

    [69] Scarcelli G, Berardi V, Shih Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 96, 063602(2006).

    [70] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).

    [71] Shih Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012).

    [72] Shapiro J H, Boyd R W. Response to “the physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?”[J]. Quantum Information Processing, 11, 1003-1011(2012).

    [73] Wei Z, Lu R H, Yu H et al. Research on intensity-correlated interferometry with ultra-weak light based on coincidence counting[J]. Acta Optica Sinica, 40, 0111013(2020).

    [74] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction[J]. Infrared and Laser Engineering, 48, 0603003(2019).

    [75] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [76] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [77] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [78] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [79] Diebold A V, Imani M F, Sleasman T et al. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures[J]. Optica, 5, 1529-1541(2018).

    Xuyi Xiao, Liuya Chen, Xuezhi Zhang, Chong Wang, Ruijun Lan, Cheng Ren, Dezhong Cao. Review on Single-Pixel Imaging and Its Probability Statistical Analysis[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011018
    Download Citation