• Journal of Inorganic Materials
  • Vol. 36, Issue 5, 492 (2021)
Hui XIANG1、2, Hui QUAN1, Yiyuan HU1, Weiqian ZHAO1, Bo XU2、3, and Jiang YIN2
Author Affiliations
  • 11. School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
  • 22. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
  • 33. School of Sciences, China Pharmaceutical University, Nanjing 211198, China
  • show less
    DOI: 10.15541/jim20200346 Cite this Article
    Hui XIANG, Hui QUAN, Yiyuan HU, Weiqian ZHAO, Bo XU, Jiang YIN. Piezoelectricity of Graphene-like Monolayer ZnO and GaN[J]. Journal of Inorganic Materials, 2021, 36(5): 492 Copy Citation Text show less
    References

    [1] Y SAITO, H TAKAO, T TANI et al. Lead-free piezoceramics. Nature, 432, 84-87(2004).

    [2] M H ZHAO, Z L WANG, S X MAO. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 4, 587-590(2004).

    [3] Z L WANG. Nanostructures of zinc oxide. Materials Today, 7, 26-33(2004).

    [4] W WU, L WANG, Y LI et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 514, 470(2014).

    [5] M DAI, Z WANG, F WANG et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Letters, 19, 5410-5416(2019).

    [6] K A N DUERLOO, M T ONG, E J REED. Intrinsic piezoelectricity in two-dimensional materials. The Journal of Physical Chemistry Letters, 3, 2871-2876(2012).

    [7] W LI, J LI. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Research, 8, 3796-3802(2015).

    [8] P Y PRODHOMME, A BEYA-WAKATA, G BESTER. Nonlinear piezoelectricity in wurtzite semiconductors. Physical Review B, 88, 121304(2013).

    [9] A JANOTTI, DE WALLE C G VAN. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72, 126501(2009).

    [10] S STRITE, H MORKOÇ. GaN. AlN, and InN: a review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10, 1237-1266(1992).

    [11] J ZHANG, C WANG, C BOWEN. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale, 6, 13314-13327(2014).

    [12] J ZHOU, Y GU, P FEI. Flexible piezotronic strain sensor. Nano Letters, 8, 3035-3040(2008).

    [13] R AGRAWAL, H D ESPINOSA. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires: a first principles investigation. Nano Letters, 11, 786-790(2011).

    [14] A MOGULKOC, Y MOGULKOC, M MODARRESI et al. Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers. Physical Chemistry Chemical Physics, 20, 28124-28134(2018).

    [15] C TUSCHE, H L MEYERHEIM, J KIRSCHNER. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Physical Review Letters, 99, 026102(2007).

    [16] M TOPSAKAL, S CAHANGIROV, E BEKAROGLU et al. First-principles study of zinc oxide honeycomb structures. Physical Review B, 80, 235119(2009).

    [17] H SHU, X NIU, X DING et al. Effects of strain and surface modificaion on stability, electronic and optical properties of GaN monolayer. Applied Surface Science, 479, 475-481(2019).

    [18] G KRESSE, J FURTHMÜLLER. Efficiency ofab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996).

    [19] G KRESSE, J FURTHMüLLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169(1996).

    [20] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865(1996).

    [21] D VANDERBILT. Berry-phase theory of proper piezoelectric response. Journal of Physics and Chemistry of Solids, 61, 147-151(2000).

    [22] J HEYD, G E SCUSERIA, M ERNZERHOF. Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118, 8207-8215(2003).

    [23] H K HONG, J JO, D HWANG et al. Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Letters, 17, 120-127(2017).

    [24] Q PENG, C LIANG, W JI et al. A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer. Computational Materials Science, 68, 320-324(2013).

    [25] Q PENG, C LIANG, W JI et al. Mechanical properties of g-GaN: a first principles study. Applied Physics A, 113, 483-490(2013).

    [26] X WEI, B FRAGNEAUD, C A MARIANETTI et al. Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Physical Review B, 80, 205407(2009).

    [27] C M LUENG, H L W CHAN, C SURYA et al. Piezoelectric coefficient of aluminum nitride and gallium nitride. Journal of Applied Physics, 88, 5360-5363(2000).

    [28] S XU, Y QIN, C XU et al. Self-powered nanowire devices. Nature Nanotechnology, 5, 366-373(2010).

    Hui XIANG, Hui QUAN, Yiyuan HU, Weiqian ZHAO, Bo XU, Jiang YIN. Piezoelectricity of Graphene-like Monolayer ZnO and GaN[J]. Journal of Inorganic Materials, 2021, 36(5): 492
    Download Citation