• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021337 (2022)
Xiao-Yan LI1、2、3, Zhuo-Yue HU2、3, Lin-Yi JIANG2、3、4, and Fan-Sheng CHEN1、2、3、*
Author Affiliations
  • 1Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • 2Key Laboratory of Intelligent Infrared Perception,Chinese Academy of Sciences,Shanghai 200083,China
  • 3CAS Key Laboratory of Infrared System Detection and Imaging Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 4University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.014 Cite this Article
    Xiao-Yan LI, Zhuo-Yue HU, Lin-Yi JIANG, Fan-Sheng CHEN. In-orbit geometric imaging simulation based on ray-tracing for long-linear-array and whisk-broom thermal infrared imager[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021337 Copy Citation Text show less
    Diagrams of spliced detector,optical path and in-orbit imaging(a)diagram of in-orbit imaging,(b)diagram of optical path,(c)diagram of spliced detector
    Fig. 1. Diagrams of spliced detector,optical path and in-orbit imaging(a)diagram of in-orbit imaging,(b)diagram of optical path,(c)diagram of spliced detector
    Flowchart of on-orbit geometric imaging simulation of TIRI
    Fig. 2. Flowchart of on-orbit geometric imaging simulation of TIRI
    Referencing data(a)upsampled AwiFS images with 30 m resolution,(b)30 m ASTER GDEM,(c)30 m Landsat8 orthoimage
    Fig. 3. Referencing data(a)upsampled AwiFS images with 30 m resolution,(b)30 m ASTER GDEM,(c)30 m Landsat8 orthoimage
    The simulation image and GCPs matching results(a)the simulation images of two scan periods,(b)GCPs matching results of the simulation image and reference image
    Fig. 4. The simulation image and GCPs matching results(a)the simulation images of two scan periods,(b)GCPs matching results of the simulation image and reference image
    Distribution comparison of geometric positioning errors of simulation images:(a)positioning errors in X before calibration,(b)positioning errors in Y before calibration,(c)positioning errors in Z before calibration,(d)positioning errors in X after calibration,(e)positioning errors in Y after calibration,(f)positioning errors in Z after calibration
    Fig. 5. Distribution comparison of geometric positioning errors of simulation images:(a)positioning errors in X before calibration,(b)positioning errors in Y before calibration,(c)positioning errors in Z before calibration,(d)positioning errors in X after calibration,(e)positioning errors in Y after calibration,(f)positioning errors in Z after calibration
    Distribution comparison of planar geometric positioning errors of simulation images:(a)planar positioning errors before calibration,(b)planar positioning errors after calibration
    Fig. 6. Distribution comparison of planar geometric positioning errors of simulation images:(a)planar positioning errors before calibration,(b)planar positioning errors after calibration
    SDGSAT-1TIRI
    ItemsDesign indexesItemsDesign indexes
    Orbit typeSun-synchronousSwath300 km
    Orbit505 kmResolution30 m
    Local time of descending node09:30Bands

    8-10.5 μm

    10.3-11.3 μm

    11.5-12.5 μm

    Orbit period94.7 minsPixel size30 μm
    Inclination97.4°Scan period7.48 s
    Eccentricity0.0Field of view(FOV)along-track/ cross-track7.0°/≥ 33.1°
    Revisit interval~10.5 daysF#1.94
    Life>3 yearsFocal length505×(1±5%)mm
    Table 1. Orbit parameters of SDGSAT-1 and specifications of LLAWB TIRI

    Input:Sensor model,Referencing DOM & DEM,simulated attitudes and ephemeris,GCPs

    Output:Simulating images

    1. Construct the rigorous positioning model:

    X,Y,ZT=g((i,j,1)T)

    2. Ray-tracing-based intersection calculation and gray-value projection:

    Initial simulating image:Iinitial(x,y)

    3. Geometric calibration of the rigorous positioning medel:

    X,Y,ZT=gcalibrated((i,j,1)T)

    4. Repeat step 2 until convergence

    Final simulating image:Ifinal(x,y)

    Table 2. In-orbit geometric imaging simulation based on ray tracing for LLAWB TIRI
    Time(UTCG)X(Km)Y(Km)Z(Km)

    Vx

    (km/sec)

    Vy

    (km/sec)

    Vz

    (km/sec)

    Yaw(°)Pitch(°)Roll(°)
    02:44:00.000-2 033.847 02-5 244.471 933 967.558 30-2.702 40-3.595 56-6.138 05111.82217.186-127.108
    02:44:00.100-2 034.116 79-5 244.831 033 966.945 27-2.702 15-3.594 92-6.138 54111.82017.188-127.102
    02:44:00.200-2 034.386 53-5 245.190 063 966.332 19-2.701 90-3.594 28-6.139 02111.81817.190-127.096
    02:44:15.800-2 076.161 07-5 300.413 663 870.104 48-2.662 76-3.493 89-6.213 63111.53117.555-126.135
    02:44:15.900-2 076.426 88-5 300.762 603 869.483 90-2.662 50-3.493 24-6.214 10111.52917.557-126.129
    02:44:16.000-2 076.692 67-5 301.111 483 868.863 27-2.662 25-3.492 60-6.214 57111.52817.559-126.123
    Table 3. Simulating ephemeris and attitudes of SDGSAT-1 minisatellite in J2000
    ItemsPositioning error before calibrationPositioning error after calibration
    X(m)Y(m)Z(m)XY-plane(m)X(m)Y(m)Z(m)XY-plane(m)
    Maximum656.543567.579821.984784.353186.959293.231231.615473.753
    Minimum0.11517.80843.96434.6010.05117.8080.0692.782
    Mean216.651245.243261.516350.41634.23449.56331.51163.875
    Median257.013247.215241.014349.77830.27049.28329.53361.733
    RMSE153.06147.07478.831181.83734.14540.47130.36639.876
    Table 4. Geometric positioning accuracy comparison of simulation images before and after calibration
    Xiao-Yan LI, Zhuo-Yue HU, Lin-Yi JIANG, Fan-Sheng CHEN. In-orbit geometric imaging simulation based on ray-tracing for long-linear-array and whisk-broom thermal infrared imager[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021337
    Download Citation