• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201056 (2020)
Gaoyou Liu, Disheng Wei, Yi Chen, Ke Yang, Shuyi Mi, Junhui Li, Chao Yang, Ruixue Wang, Xiaoming Duan, Tongyu Dai, Baoquan Yao*, Youlun Ju, and Yuezhu Wang
Author Affiliations
  • National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.3788/IRLA20201056 Cite this Article
    Gaoyou Liu, Disheng Wei, Yi Chen, Ke Yang, Shuyi Mi, Junhui Li, Chao Yang, Ruixue Wang, Xiaoming Duan, Tongyu Dai, Baoquan Yao, Youlun Ju, Yuezhu Wang. Research progress of 2 μm Ho single-doped solid laser and application of ZnGeP2 on middle-long-wave infrared (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201056 Copy Citation Text show less
    References

    [1] D S Boyd, F Petitcolin. Remote sensing of the terrestrial environment using middle infrared radiation (3.0–5.0 μm). International Journal of Remote Sensing, 25, 3343-3368(2004).

    [2] A Godard. Infrared (2–12 μm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100-1128(2007).

    [3] Vaicikauskas V, Kabelka V, Kuprionis Z, et al. Infrared DIAL f remote sensing of atmospheric pollutants[C]Proc of SPIE, 2005, 5958: 59581K.

    [4] Vaicikauskas V, Kuprionis Z, Kaucikas M, et al. infrared all solid state DIAL f remote sensing of hazardous chemical agents[C]Proc of SPIE, 2006, 6214: 62140E.

    [5] Mitev V, Babichenko S, Bennes J, et al. IR DIAL f highresolution mapping of explosive precurss[C]Proc of SPIE, 2013, 8894: 88940S.

    [6] Z Jiao, G He, J Guo. High average power 2 μm generation using an intracavity PPMgLN optical parametric oscillator. Optics Letters, 37, 64-66(2012).

    [7] J Guo, G Y He, B F Zhang. Compact efficient 2.1 m intracavity MgO: PPLN OPO with a VBG output coupler. IEEE Photonics Technology Letters, 27, 573-576(2015).

    [8] H Yu, X Zheng, K Yin. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets. Optical Materials Express, 6, 603-609(2016).

    [10] N Coluccelli, A Lagatsky, Lieto A Di. Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm. Optics Letters, 36, 3209-3211(2011).

    [11] T M Taczak, D K Killinger. Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O. Applied Optics, 37, 8460-8476(1998).

    [12] F Gibert, J Pellegrino, D Edouart. 2-μm double-pulse single-frequency Tm:fiber laser pumped Ho:YLF laser for a space-borne CO2 lidar. Applied Optics, 57, 10370-10379(2018).

    [13] X Duan, J Yuan, Z Cui. Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm. Applied Optics, 55, 1953-1956(2016).

    [14] Z Cui, X M Duan, B Q Yao. Doubly Q-switched Ho:LuAG laser with acoustic-optic modulator and Cr2+:ZnS saturable absorber. Applied Optics, 54, 10272-10276(2015).

    [15] Budni P A, Pomeranz L A, Miller C A, et al. CW Qswitched Ho: YAG pumped by Tm: YALO[C]Advanced Solid State Lasers, 1998: ML4.

    [16] C Bollig, R A Hayward, W A Clarkson. 2 W Ho:YAG laser intracavity pumped by a diode-pumped Tm: YAG laser. Optics Letters, 23, 1757-1759(1998).

    [17] S. Koopmann P Lamrini, M Schafer. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm. Applied Physics B, 106, 315-319(2012).

    [18] Y J Shen, B Q Yao, X M Duan. 103W in-band dual-end-pumped Ho:YAG laser. Optics Letters, 37, 3558(2012).

    [19] H Fonum, E Lippert, M W Haakestad. 550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm fiber laser. Optics Letters, 38, 1884-1886(2013).

    [20] B R Zhao, B Q Yao, C P Qian. 231 W dual-end-pumped Ho:YAG MOPA system and its application to a mid-infrared ZGP OPO. Optics Letters, 43, 5989-5992(2018).

    [22] Chen Yi, 陈毅, 刘高佑, Gaoyou Liu, 王瑞雪, Ruixue Wang. Research progress of nonlinear crystal applied in mid and long-wave infrared solid-state laser. Journal of Synthetic Crystals, 49, 1379-1395(2020).

    [23] D E Zelmon, E A Hanning, P G Schunemann. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices. J Opt Soc Am B, 18, 1307-1310(2001).

    [24] K Vodopyanov, V Voevodin. Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm. Optics Communications, 117, 277-282(1995).

    [25] F Kenji, T H Michael, O Azusa. Tunable mid-infrared (6.3–12 μm) optical vortex pulse generation. Optics Express, 22, 26351-26357(2014).

    [26] M W Haakestad, H Fonnum, E Lippert. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2. Optics Express, 22, 8556-8564(2014).

    [27] Fonnum H, Bakkl A, Haakestad M W. Optical parametric oscillat at 8 μm with high pulse energy good beam quality[C]Conference on Lasers ElectroOptics (CLEO), 2016: paper MS4C.5.

    [28] D Sanchez, M Hemmer, M Baudisch. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm. Optica, 3, 147-150(2016).

    [29] C P Qian, B Q Yao, B R Zhao. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation. Optics Letters, 44, 715-718(2019).

    [30] G Liu, Y Chen, B Yao. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals. Applied Physics B, 125, 233(2019).

    [31] G Liu, Y Chen, B Yao. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm. Optics Letters, 45, 2347-2350(2020).

    Gaoyou Liu, Disheng Wei, Yi Chen, Ke Yang, Shuyi Mi, Junhui Li, Chao Yang, Ruixue Wang, Xiaoming Duan, Tongyu Dai, Baoquan Yao, Youlun Ju, Yuezhu Wang. Research progress of 2 μm Ho single-doped solid laser and application of ZnGeP2 on middle-long-wave infrared (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201056
    Download Citation