• Photonics Research
  • Vol. 11, Issue 10, 1657 (2023)
Xinyu Liu1, Shaoxiong Wu1,2, Xiaoxue Cao1,3, Feng Tian1,2..., Srikrishna Chanakya Bodepudi1, Muhammad Malik1, Chao Gao3, Li Peng1,4,*, Huan Hu2,5,* and Yang Xu1,2,6,*|Show fewer author(s)
Author Affiliations
  • 1School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
  • 2ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China
  • 3Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
  • 4e-mail: l-peng@zju.edu.cn
  • 5e-mail: huanhu@intl.zju.edu.cn
  • 6e-mail: yangxu-isee@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.496848 Cite this Article Set citation alerts
    Xinyu Liu, Shaoxiong Wu, Xiaoxue Cao, Feng Tian, Srikrishna Chanakya Bodepudi, Muhammad Malik, Chao Gao, Li Peng, Huan Hu, Yang Xu, "Plasmon resonance-enhanced graphene nanofilm-based dual-band infrared silicon photodetector," Photonics Res. 11, 1657 (2023) Copy Citation Text show less
    References

    [1] S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, R. Gorbachev. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater., 11, 764-767(2012).

    [2] H. Wang, H. S. Wang, C. Ma, L. Chen, C. Jiang, C. Chen, X. Xie, A.-P. Li, X. Wang. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys., 3, 791-802(2021).

    [3] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [4] T. Jiang, V. Kravtsov, M. Tokman, A. Belyanin, M. B. Raschke. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol., 14, 838-843(2019).

    [5] T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou, N. An, B. Peng, G. Soavi, Y. Rao, B. Yao. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun., 12, 6716(2021).

    [6] S. K. Behura, C. Wang, Y. Wen, V. Berry. Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics, 13, 312-318(2019).

    [7] Y. Xu, K. Shehzad, S. C. Bodepudi, A. Imran, B. Yu. Graphene for Post-Moore Silicon Optoelectronics(2023).

    [8] D. Akinwande, C. Huyghebaert, C.-H. Wang, M. I. Serna, S. Goossens, L.-J. Li, H.-S. P. Wong, F. H. L. Koppens. Graphene and two-dimensional materials for silicon technology. Nature, 573, 507-518(2019).

    [9] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. A roadmap for graphene. Nature, 490, 192-200(2012).

    [10] B. Sun, R. N. McCay, S. Goswami, Y. Xu, C. Zhang, Y. Ling, J. Lin, Z. Yan. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater., 30, 1804327(2018).

    [11] R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang, Z. You. Laser fabrication of graphene-based flexible electronics. Adv. Mater., 32, 1901981(2020).

    [12] E. O. Polat, G. Mercier, I. Nikitskiy, E. Puma, T. Galan, S. Gupta, M. Montagut, J. J. Piqueras, M. Bouwens, T. Durduran, G. Konstantatos, S. Goossens, F. Koppens. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv., 5, eaaw7846(2019).

    [13] Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Y. H. Tsang. High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Opt. Lett., 42, 3335-3338(2017).

    [14] M. Shimatani, N. Yamada, S. Fukushima, S. Okuda, S. Ogawa, T. Ikuta, K. Maehashi. High-responsivity turbostratic stacked graphene photodetectors using enhanced photogating. Appl. Phys. Express, 12, 122010(2019).

    [15] J. Wei, Y. Li, L. Wang, W. Liao, B. Dong, C. Xu, C. Zhu, K.-W. Ang, C.-W. Qiu, C. Lee. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun., 11, 6404(2020).

    [16] W. Liu, J. Lv, L. Peng, H. Guo, C. Liu, Y. Liu, W. Li, L. Li, L. Liu, P. Wang, S. C. Bodepudi, K. Shehzad, G. Hu, K. Liu, Z. Sun, T. Hasan, Y. Xu, X. Wang, C. Gao, B. Yu, X. Duan. Graphene charge-injection photodetectors. Nat. Electron., 5, 281-288(2022).

    [17] J. Lv, Y. Dong, X. Cao, X. Liu, L. Li, W. Liu, H. Guo, X. Wang, S. C. Bodepudi, Y. Zhao, Y. Xu, B. Yu. Broadband graphene field-effect coupled detectors: from soft X-ray to near-infrared. IEEE Electron Device Lett., 43, 902-905(2022).

    [18] X. Liu, H. Ning, J. Lv, L. Liu, L. Peng, F. Tian, S. C. Bodepudi, X. Wang, X. Cao, Y. Dong, W. Fang, S. Wu, H. Hu, B. Yu, Y. Xu. High-performance broadband graphene/silicon/graphene photodetectors: from X-ray to near-infrared. Appl. Phys. Lett., 122, 071105(2023).

    [19] M. S. Choi, A. Nipane, B. S. Y. Kim, M. E. Ziffer, I. Datta, A. Borah, Y. Jung, B. Kim, D. Rhodes, A. Jindal, Z. A. Lamport, M. Lee, A. Zangiabadi, M. N. Nair, T. Taniguchi, K. Watanabe, I. Kymissis, A. N. Pasupathy, M. Lipson, X. Zhu, W. J. Yoo, J. Hone, J. T. Teherani. High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide. Nat. Electron., 4, 731-739(2021).

    [20] J. H. Gosling, O. Makarovsky, F. Wang, N. D. Cottam, M. T. Greenaway, A. Patanè, R. D. Wildman, C. J. Tuck, L. Turyanska, T. M. Fromhold. Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Commun. Phys., 4, 30(2021).

    [21] L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, S. G. Louie. Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett., 103, 186802(2009).

    [22] S. M. Koepfli, M. Baumann, Y. Koyaz, R. Gadola, A. Güngör, K. Keller, Y. Horst, S. Nashashibi, R. Schwanninger, M. Doderer, E. Passerini, Y. Fedoryshyn, J. Leuthold. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science, 380, 1169-1174(2023).

    [23] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, M. Polini. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun., 4, 1987(2013).

    [24] K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, F. H. L. Koppens. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys., 9, 248-252(2013).

    [25] X. Lu, L. Sun, P. Jiang, X. Bao. Progress of photodetectors based on the photothermoelectric effect. Adv. Mater., 31, 1902044(2019).

    [26] K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, F. H. L. Koppens. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol., 10, 437-443(2015).

    [27] Q. Ma, N. M. Gabor, T. I. Andersen, N. L. Nair, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett., 112, 247401(2014).

    [28] N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, P. Jarillo-Herrero. Hot carrier–assisted intrinsic photoresponse in graphene. Science, 334, 648-652(2011).

    [29] K. K. Paul, J.-H. Kim, Y. H. Lee. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys., 3, 178-192(2021).

    [30] Q. Ma, T. I. Andersen, N. L. Nair, N. M. Gabor, M. Massicotte, C. H. Lui, A. F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F. H. L. Koppens, P. Jarillo-Herrero. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys., 12, 455-459(2016).

    [31] Y. Lin, Q. Ma, P.-C. Shen, B. Ilyas, Y. Bie, A. Liao, E. Ergeçen, B. Han, N. Mao, X. Zhang, X. Ji, Y. Zhang, J. Yin, S. Huang, M. Dresselhaus, N. Gedik, P. Jarillo-Herrero, X. Ling, J. Kong, T. Palacios. Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions. Sci. Adv., 5, eaav1493(2019).

    [32] S. Fu, I. du Fossé, X. Jia, J. Xu, X. Yu, H. Zhang, W. Zheng, S. Krasel, Z. Chen, Z. M. Wang, K.-J. Tielrooij, M. Bonn, A. J. Houtepen, H. I. Wang. Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS2 heterostructures. Sci. Adv., 7, eabd9061(2021).

    [33] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [34] V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, A. K. Geim. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B, 81, 155413(2010).

    [35] L. Peng, Y. Han, M. Wang, X. Cao, J. Gao, Y. Liu, X. Chen, B. Wang, B. Wang, C. Zhu, X. Wang, K. Cao, M. Huang, B. V. Cunning, J. Pang, W. Xu, Y. Ying, Z. Xu, W. Fang, Y. Lu, R. S. Ruoff, C. Gao. Multifunctional macroassembled graphene nanofilms with high crystallinity. Adv. Mater., 33, 2104195(2021).

    [36] L. Peng, L. Liu, S. Du, S. C. Bodepudi, L. Li, W. Liu, R. Lai, X. Cao, W. Fang, Y. Liu, X. Liu, J. Lv, M. Abid, J. Liu, S. Jin, K. Wu, M. Lin, X. Cong, P. Tan, H. Zhu, Q. Xiong, X. Wang, W. Hu, X. Duan, B. Yu, Z. Xu, Y. Xu, C. Gao. Macroscopic assembled graphene nanofilms based room temperature ultrafast mid-infrared photodetectors. InfoMat, 4, e12309(2022).

    [37] L. Liu, X. Cao, L. Peng, S. C. Bodepudi, S. Wu, W. Fang, J. Liu, Y. Xiao, X. Wang, Z. Di, R. Cheng, Y. Xu, C. Gao, B. Yu. Macroscopic-assembled-graphene nanofilms/germanium broadband photodetectors. IEEE International Electron Devices Meeting (IEDM), 9.2.1-9.2.4(2021).

    [38] M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [39] M. Kim, J.-H. Lee, J.-M. Nam. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci., 6, 1900471(2019).

    [40] S. S. Aćimović, H. Šípová, G. Emilsson, A. B. Dahlin, T. J. Antosiewicz, M. Käll. Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing. Light Sci. Appl., 6, e17042(2017).

    [41] O. Zandi, A. Agrawal, A. B. Shearer, L. C. Reimnitz, C. J. Dahlman, C. M. Staller, D. J. Milliron. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater., 17, 710-717(2018).

    [42] X. Sun, H. Liu, L. Jiang, R. Wei, C. Wang, X. Wang, X. Sun, F. Wang, X. Lu, A. B. Evlyukhin, C. Huang. Directional surface plasmon polariton scattering by single low-index dielectric nanoparticles: simulation and experiment. Photon. Res., 11, 765-772(2023).

    [43] K. Wu, J. Chen, J. R. McBride, T. Lian. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 349, 632-635(2015).

    [44] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95-103(2014).

    [45] J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, D. H. Zhang. Surface plasmon enhanced infrared photodetection. Opto-Electron. Adv., 2, 18002601(2019).

    [46] M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 10, 25-34(2015).

    [47] Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S.-J. Liang, L. K. Ang, C. Shu, H. K. Tsang, J.-B. Xu. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano, 11, 430-437(2017).

    [48] I. Vangelidis, D. V. Bellas, S. Suckow, G. Dabos, S. Castilla, F. H. L. Koppens, A. C. Ferrari, N. Pleros, E. Lidorikis. Unbiased plasmonic-assisted integrated graphene photodetectors. ACS Photon., 9, 1992-2007(2022).

    [49] B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, J. Teng. Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett., 109, 073901(2012).

    [50] L.-B. Luo, L.-H. Zeng, C. Xie, Y.-Q. Yu, F.-X. Liang, C.-Y. Wu, L. Wang, J.-G. Hu. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep., 4, 3914(2014).

    [51] L. Scriven, C. Sternling. The marangoni effects. Nature, 187, 186-188(1960).

    [52] P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, Y. Cui. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing. Nano Lett., 15, 4591-4598(2015).

    [53] S. Wu, C. Chen, X. Wu, F. Tian, Y. Ma, Y. Xu, H. Hu. Wafer-scale low-cost complementary vertically coupled plasmonic structure for surface-enhanced infrared absorption. Sens. Actuators B, 382, 133560(2023).

    [54] B. Shan, L. Xia, S. Ma, Z. Yin, X. Liu, G. Li, Y. Huang. Achieving multiband compatible and mechanical tuning absorber using edge topological defect-induced graphene plasmon. Carbon, 192, 1-13(2022).

    [55] X. Wan, Y. Xu, H. Guo, K. Shehzad, A. Ali, Y. Liu, J. Yang, D. Dai, C.-T. Lin, L. Liu, H.-C. Cheng, F. Wang, X. Wang, H. Lu, W. Hu, X. Pi, Y. Dan, J. Luo, T. Hasan, X. Duan, X. Li, J. Xu, D. Yang, T. Ren, B. Yu. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. npj 2D Mater. Appl., 1, 4(2017).

    [56] Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, X. Duan. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p–n heterojunctions. ACS Nano, 10, 4895-4919(2016).

    [57] X. Li, D. Xiao, Z. Zhang. Landau damping of quantum plasmons in metal nanostructures. New J. Phys., 15, 023011(2013).

    [58] A. Manjavacas, J. G. Liu, V. Kulkarni, P. Nordlander. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 8, 7630-7638(2014).

    [59] E. Kazuma, J. Jung, H. Ueba, M. Trenary, Y. Kim. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science, 360, 521-526(2018).

    [60] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun., 2, 579(2011).

    [61] A. Zada, P. Muhammad, W. Ahmad, Z. Hussain, S. Ali, M. Khan, Q. Khan, M. Maqbool. Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv. Funct. Mater., 30, 1906744(2020).

    [62] Y. Yang, J. Gu, J. L. Young, E. M. Miller, J. A. Turner, N. R. Neale, M. C. Beard. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science, 350, 1061-1065(2015).

    [63] Y. Fang, A. Armin, P. Meredith, J. Huang. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics, 13, 1-4(2019).

    Xinyu Liu, Shaoxiong Wu, Xiaoxue Cao, Feng Tian, Srikrishna Chanakya Bodepudi, Muhammad Malik, Chao Gao, Li Peng, Huan Hu, Yang Xu, "Plasmon resonance-enhanced graphene nanofilm-based dual-band infrared silicon photodetector," Photonics Res. 11, 1657 (2023)
    Download Citation