• Journal of Semiconductors
  • Vol. 44, Issue 3, 032702 (2023)
Zhimin Ji1,2 and Zhigang Song1,*
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/44/3/032702 Cite this Article
    Zhimin Ji, Zhigang Song. Exciton radiative lifetime in CdSe quantum dots[J]. Journal of Semiconductors, 2023, 44(3): 032702 Copy Citation Text show less
    References

    [1] A L Efros, M Rosen. The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci, 30, 475(2000).

    [2] L H Qu, X G Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc, 124, 2049(2002).

    [3] A R Kirmani, J M Luther, M Abolhasani et al. Colloidal quantum dot photovoltaics: Current progress and path to gigawatt scale enabled by smart manufacturing. ACS Energy Lett, 5, 3069(2020).

    [4] Y S Park, J Roh, B T Diroll et al. Colloidal quantum dot lasers. Nat Rev Mater, 6, 382(2021).

    [5] S Pradhan, M Dalmases, A Baspinar et al. Highly efficient, bright, and stable colloidal quantum dot short-wave infrared light-emitting diodes. Adv Funct Mater, 30, 2004445(2020).

    [6] B A Kairdolf, A M Smith, T H Stokes et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem, 6, 143(2013).

    [7] L H Qu, Z A Peng, X G Peng. Alternative routes toward high quality CdSe nanocrystals. Nano Lett, 1, 333(2001).

    [8] C B Murray, D J Norris, M G Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 115, 8706(1993).

    [9] S Empedocles, M Bawendi. Spectroscopy of single CdSe nanocrystallites. Acc Chem Res, 32, 389(1999).

    [10] D F Underwood, T Kippeny, S J Rosenthal. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J Phys Chem B, 105, 436(2001).

    [11] A M Munro, C Chandler, M Garling et al. Phenyldithiocarbamate ligands decompose during nanocrystal ligand exchange. J Phys Chem C, 120, 29455(2016).

    [12] O Labeau, P Tamarat, B Lounis. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys Rev Lett, 90, 257404(2003).

    [13] X Y Wang, L H Qu, J Y Zhang et al. Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett, 3, 1103(2003).

    [14] M A Leontiadou, E J Tyrrell, C T Smith et al. Influence of elevated radiative lifetime on efficiency of CdSe/CdTe type II colloidal quantum dot based solar cells. Sol Energy Mater Sol Cells, 159, 657(2017).

    [15] A Javier, D Magana, T Jennings et al. Nanosecond exciton recombination dynamics in colloidal CdSe quantum dots under ambient conditions. Appl Phys Lett, 83, 1423(2003).

    [16] A F van Driel, G Allan, C Delerue et al. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states. Phys Rev Lett, 95, 236804(2005).

    [17] C de Mello Donegá, R Koole. Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J Phys Chem C, 113, 6511(2009).

    [18] K Gong, Y H Zeng, D F Kelley. Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals. J Phys Chem C, 117, 20268(2013).

    [19] S A Crooker, T Barrick, J A Hollingsworth et al. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl Phys Lett, 82, 2793(2003).

    [20] M D Leistikow, J Johansen, A J Kettelarij et al. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Phys Rev B, 79, 045301(2009).

    [21] M Califano, A Franceschetti, A Zunger. Temperature dependence of excitonic radiative decay in CdSe quantum dots: The role of surface hole traps. Nano Lett, 5, 2360(2005).

    [22] M Califano, A Franceschetti, A Zunger. Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys Rev B, 75, 115401(2007).

    [23] G Schlegel, J Bohnenberger, I Potapova et al. Fluorescence decay time of single semiconductor nanocrystals. Phys Rev Lett, 88, 137401(2002).

    [24] G Messin, J P Hermier, E Giacobino et al. Bunching and antibunching in the fluorescence of semiconductor nanocrystals. Opt Lett, 26, 1891(2001).

    [25] B Lounis, H A Bechtel, D Gerion et al. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem Phys Lett, 329, 399(2000).

    [26] X Brokmann, L Coolen, M Dahan et al. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys Rev Lett, 93, 107403(2004).

    [27] S F Wuister, C de Mello Donegá, A Meijerink. Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. J Chem Phys, 121, 4310(2004).

    [28] U Kaiser, D Jimenez de Aberasturi, R Malinowski et al. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Appl Phys Lett, 104, 041901(2014).

    [29] T Ihara, Y Kanemitsu. Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined Stark effect. Phys Rev B, 90, 195302(2014).

    [30] X W Wu, M Gong, C H Dong et al. Anti-bunching and luminescence blinking suppression from plasmon-interacted single CdSe/ZnS quantum dot. Opt Express, 18, 6340(2010).

    [31] S Masuo, H Naiki, S Machida et al. Photon statistics in enhanced fluorescence from a single CdSe/ZnS quantum dot in the vicinity of silver nanoparticles. Appl Phys Lett, 95, 193106(2009).

    [32] C T Yuan, P Yu, H C Ko et al. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots. ACS Nano, 3, 3051(2009).

    [33] P C Sercel, A L Efros. Band-edge exciton in CdSe and other II-VI and III-V compound semiconductor nanocrystals - revisited. Nano Lett, 18, 4061(2018).

    [34] J Maes, N Castro, K de Nolf et al. Size and concentration determination of colloidal nanocrystals by small-angle X-ray scattering. Chem Mater, 30, 3952(2018).

    [35] W W Yu, L H Qu, W Z Guo et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater, 15, 2854(2003).

    [36] Y Ebenstein, T Mokari, U Banin. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl Phys Lett, 80, 4033(2002).

    [37] Demas J. Excited state lifetime measurements. New York: Academic Press, 1983

    [38] E Kuçur, F M Boldt, S Cavaliere-Jaricot et al. Quantitative analysis of cadmium selenide nanocrystal concentration by comparative techniques. Anal Chem, 79, 8987(2007).

    [39] P Michler, A Imamoğlu, M D Mason et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968(2000).

    [40] A Franceschetti, H Fu, L W Wang et al. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys Rev B, 60, 1819(1999).

    [41] J W Luo, P Stradins, A Zunger. Matrix-embedded silicon quantum dots for photovoltaic applications: A theoretical study of critical factors. Energy Environ Sci, 4, 2546(2011).

    [42] L E Brus. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys, 80, 4403(1984).

    [43] I Moreels, G Rainò, R Gomes et al. Band-edge exciton fine structure of small, nearly spherical colloidal CdSe/ZnS quantum dots. ACS Nano, 5, 8033(2011).

    [44] M Chamarro, M Dib, C Gourdon et al. Electronic structure of O-D exciton ground state in CdSe nanocrystals. MRS Online Proc Libr, 452, 341(1996).

    [45] A L Efros, M Rosen, M Kuno et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys Rev B, 54, 4843(1996).

    [46] A V Rodina, A L Efros. Radiative recombination from dark excitons in nanocrystals: Activation mechanisms and polarization properties. Phys Rev B, 93, 155427(2016).

    [47] L W Wang, A Zunger. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys Rev B, 53, 9579(1996).

    [48] L W Wang, A Zunger. Electronic structure pseudopotential calculations of large (.apprx.1000 atoms) Si quantum dots. J Phys Chem, 98, 2158(1994).

    [49] L W Wang, A Zunger. Solving Schrödinger's equation around a desired energy: Application to silicon quantum dots. J Chem Phys, 100, 2394(1994).

    [50] R W Meulenberg, J R I Lee, A Wolcott et al. Determination of the exciton binding energy in CdSe quantum dots. ACS Nano, 3, 325(2009).

    [51] J M An, A Franceschetti, A Zunger. The excitonic exchange splitting and radiative lifetime in PbSe quantum dots. Nano Lett, 7, 2129(2007).

    [52] T Senden, F T Rabouw, A Meijerink. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals. ACS Nano, 9, 1801(2015).

    [53] A I Ekimov, F Hache, M C Schanne-Klein et al. Absorption and intensity dependent photoluminescence measurements on CdSe quantum dots: Assignment of the first electronic transitions. J Opt Soc Am B, 10, 100(1993).

    [54] M Dresselhaus, G Dresselhaus, A Jorio. Group theory: Application to the physics of condensed matter. Berlin, Heidelberg: Springer, 10(2007).

    [55] In spherical approximation, the electron (hole) state is characterised by the total angular momentumJ =s +l +j, wheres is the spin angular momentum,l is atomic orbital angular momentum, andj is the orbital angular momentum for envelope function. The total angular momentum of an exciton (F) is the sum of the total angular momentum of hole (Jh) and electron (Je) that make it up. See Ref. [53]

    [56] J W Luo, A Franceschetti, A Zunger. Direct-bandgap InAs quantum-dots have long-range electron –hole exchange whereas indirect gap Si dots have short-range exchange. Nano Lett, 9, 2648(2009).

    [57] S V Gupalov, E L Ivchenko. The fine structure of excitonic levels in CdSe nanocrystals. Phys Solid State, 42, 2030(2000).

    [58] R Krahne, G Morello, A Figuerola et al. Physical properties of elongated inorganic nanoparticles. Phys Rep, 501, 75(2011).

    [59] Q Z Zhao, P A Graf, W B Jones et al. Shape dependence of band-edge exciton fine structure in CdSe nanocrystals. Nano Lett, 7, 3274(2007).

    [60] H H von Grünberg. Energy levels of CdSe quantum dots: Wurtzite versus zinc-blende structure. Phys Rev B, 55, 2293(1997).

    [61] H Ajiki, K Cho. Fine structure of exciton in a quantum dot: Effect of electron –hole nonanalytic exchange interaction. Singapore: World Scientific, 77(2001).

    [62] K Gong, J E Martin, L E Shea-Rohwer et al. Radiative lifetimes of zincblende CdSe/CdS quantum dots. J Phys Chem C, 119, 2231(2015).

    [63] R Karel Čapek, I Moreels, K Lambert et al. Optical properties of zincblende cadmium selenide quantum dots. J Phys Chem C, 114, 6371(2010).

    [64] Q B Wang, D K Seo. Synthesis of deep-red-emitting CdSe quantum dots and general non-inverse-square behavior of quantum confinement in CdSe quantum dots. Chem Mater, 18, 5764(2006).

    [65] Z T Deng, L Cao, F Q Tang et al. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. J Phys Chem B, 109, 16671(2005).

    [66] M B Mohamed, D Tonti, A Al-Salman et al. Synthesis of high quality zinc blende CdSe nanocrystals. J Phys Chem B, 109, 10533(2005).

    [67] A P Alivisatos, T D Harris, P J Carroll et al. Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. J Chem Phys, 90, 3463(1989).

    [68] G Hodes, A Albu-Yaron, F Decker et al. Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys Rev B, 36, 4215(1987).

    [69] G Allan, C Delerue. Confinement effects in PbSe quantum wells and nanocrystals. Phys Rev B, 70, 245321(2004).

    [70] F D Wang, H Yu, S Jeong et al. The scaling of the effective band gaps in indium-arsenide quantum dots and wires. ACS Nano, 2, 1903(2008).

    [71] J Jasieniak, L Smith, J van Embden et al. re-examination of the size-dependent absorption properties of CdSe quantum dots. J Phys Chem C, 113, 19468(2009).

    [72] V M Huxter, J Kim, S S Lo et al. Spin relaxation in zinc blende and wurtzite CdSe quantum dots. Chem Phys Lett, 491, 187(2010).

    [73] M Kuno, M Nirmal, M G Bawendi et al. Magnetic circular dichroism study of CdSe quantum dots. J Chem Phys, 108, 4242(1998).

    [74] Delerue C, Lannoo M. Nanostructures: Theory and modeling. Berlin, Heidelberg: Springer, 2013

    [75] T Takagahara. Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots. Phys Rev B, 36, 9293(1987).

    [76] Y Kayanuma. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B, 38, 9797(1988).

    [77] R C Hilborn. Einstein coefficients, cross sections,f values, dipole moments, and all that. Am J Phys, 50, 982(1982).

    [78] T J Liptay, L F Marshall, P S Rao et al. Anomalous stokes shift in CdSe nanocrystals. Phys Rev B, 76, 155314(2007).