• Opto-Electronic Science
  • Vol. 2, Issue 6, 230011 (2023)
Tianxiao Xiao、†, Suo Tu、†, Suzhe Liang, Renjun Guo, Ting Tian, and Peter Müller-Buschbaum*
DOI: 10.29026/oes.2023.230011 Cite this Article
Tianxiao Xiao, Suo Tu, Suzhe Liang, Renjun Guo, Ting Tian, Peter Müller-Buschbaum. Solar cell-based hybrid energy harvesters towards sustainability[J]. Opto-Electronic Science, 2023, 2(6): 230011 Copy Citation Text show less
References

[1] YK Pang, YT Cao, M Derakhshani, YH Fang, ZL Wang et al. Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter, 4, 116-143(2021).

[2] JW Zhong, QZ Zhong, QY Hu, N Wu, WB Li et al. Stretchable self‐powered fiber‐based strain sensor. Adv Funct Mater, 25, 1798-1803(2015).

[3] CH Xu, YR Yang, W Gao. Skin-interfaced sensors in digital medicine: from materials to applications. Matter, 2, 1414-1445(2020).

[4] SH Salter. Wave power. Nature, 249, 720-724(1974).

[5] SZ Liang, XY Wang, YJ Cheng, YG Xia, P Müller-Buschbaum. Anatase titanium dioxide as rechargeable ion battery electrode-a chronological review. Energy Storage Mater, 45, 201-264(2022).

[6] GMJ Herbert, S Iniyan, E Sreevalsan, S Rajapandian. A review of wind energy technologies. Renew Sustainable Energy Rev, 11, 1117-1145(2007).

[7] J Lehmann. Bio‐energy in the black. Front Ecol Environ, 5, 381-387(2007).

[8] YC Lai, YC Hsiao, HM Wu, ZL Wang. Waterproof fabric‐based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self‐powered sensors. Adv Sci, 6, 1801883(2019).

[9] Y Cho, K Lee, S Park, S Ahn, W Kim et al. Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure. Nano Energy, 61, 370-380(2019).

[10] A Elbanna, K Chaykun, Y Lekina, YD Liu, B Febriansyah et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci, 1, 220006(2022).

[11] DZ Tan, K Sun, ZL Li, BB Xu, JR Qiu. Photo-processing of perovskites: current research status and challenges. Opto-Electron Sci, 1, 220014(2022).

[12] XY Jiang, P Chotard, KX Luo, F Eckmann, S Tu et al. Revealing donor-acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv Energy Mater, 12, 2103977(2022).

[13] YQ Zou, S Yuan, A Buyruk, J Eichhorn, SS Yin et al. The influence of CsBr on crystal orientation and optoelectronic properties of MAPbI3-based solar cells. ACS Appl Mater Interfaces, 14, 2958-2967(2022).

[14] Y Yang, L Chen, J He, XJ Hou, XJ Qiao et al. Flexible and extendable honeycomb‐shaped triboelectric nanogenerator for effective human motion energy harvesting and biomechanical sensing. Adv Mater Technol, 7, 2100702(2022).

[15] TM Guo, YJ Gong, ZG Li, YM Liu, W Li et al. A new hybrid lead‐free metal halide piezoelectric for energy harvesting and human motion sensing. Small, 18, 2103829(2022).

[16] XC Qu, Z Liu, PC Tan, C Wang, Y Liu et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv, 8, eabq2521(2022).

[17] DJ Jiang, BJ Shi, H Ouyang, YB Fan, ZL Wang et al. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano, 14, 6436-6448(2020).

[18] XG Guo, TYY He, ZX Zhang, AX Luo, F Wang et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano, 15, 19054-19069(2021).

[19] TX Xiao, T Jiang, JX Zhu, X Liang, L Xu et al. Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl Mater Interfaces, 10, 3616-3623(2018).

[20] X Liang, T Jiang, GX Liu, YW Feng, C Zhang et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ Sci, 13, 277-285(2020).

[21] T Jiang, H Pang, J An, PJ Lu, YW Feng et al. Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater, 10, 2000064(2020).

[22] C Cheng, YW Dai, J Yu, C Liu, SJ Wang et al. Review of liquid-based systems to recover low-grade waste heat for electrical energy generation. Energy Fuels, 35, 161-175(2021).

[23] LE Bell. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

[24] TD Lee, AU Ebong. A review of thin film solar cell technologies and challenges. Renew Sustainable Energy Rev, 70, 1286-1297(2017).

[25] D Sengupta, P Das, B Mondal, K Mukherjee. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application-a review. Renew Sustainable Energy Rev, 60, 356-376(2016).

[26] G Sathiyan, EKT Sivakumar, R Ganesamoorthy, R Thangamuthu, P Sakthivel. Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett, 57, 243-252(2016).

[27] JY Kim, JW Lee, HS Jung, H Shin, NG Park. High-efficiency perovskite solar cells. Chem Rev, 120, 7867-7918(2020).

[28] TH Wu, ZZ Qin, YB Wang, YZ Wu, W Chen et al. The main progress of perovskite solar cells in 2020-2021. Nano-Micro Lett, 13, 152(2021).

[29] L Xie, W Song, JF Ge, BC Tang, XL Zhang et al. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy, 82, 105770(2021).

[30] Y Cui, HF Yao, L Hong, T Zhang, YB Tang et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl Sci Rev, 7, 1239-1246(2020).

[31] J Dréon, Q Jeangros, J Cattin, J Haschke, L Antognini et al. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 70, 104495(2020).

[32] PK Nayak, S Mahesh, HJ Snaith, D Cahen. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater, 4, 269-285(2019).

[33] JY Yuan, A Hazarika, Q Zhao, XF Ling, T Moot et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule, 4, 1160-1185(2020).

[34] L Hu, Q Zhao, SJ Huang, JH Zheng, XW Guan et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat Commun, 12, 466(2021).

[35] D Chen, M Vaqueiro Contreras, A Ciesla, P Hamer, B Hallam et al. Progress in the understanding of light‐and elevated temperature‐induced degradation in silicon solar cells: a review. Prog Photovolt Res Appl, 29, 1180-1201(2021).

[36] A Omazic, G Oreski, M Halwachs, GC Eder, C Hirschl et al. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: a literature review. Sol Energy Mater Sol Cells, 192, 123-133(2019).

[37] SP Dunfield, L Bliss, F Zhang, JM Luther, K Zhu et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv Energy Mater, 10, 1904054(2020).

[38] S Kundu, TL Kelly. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat, 2, e12025(2020).

[39] RJ Guo, D Han, W Chen, LJ Dai, KY Ji et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat Energy, 6, 977-986(2021).

[40] Z Xiong, X Chen, B Zhang, GO Odunmbaku, ZP Ou et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv Mater, 34, 2106118(2022).

[41] R Sharma, A Sharma, S Agarwal, MS Dhaka. Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol Energy, 244, 516-535(2022).

[42] CQ Li, XB Gu, ZH Chen, X Han, N Yu et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J Am Chem Soc, 144, 14731-14739(2022).

[43] QW Tang. All‐weather solar cells: a rising photovoltaic revolution. Chem Eur J, 23, 8118-8127(2017).

[44] H Ryu, HJ Yoon, SW Kim. Hybrid energy harvesters: toward sustainable energy harvesting. Adv Mater, 31, 1802898(2019).

[45] YH Wu, JK Qu, PK Chu, DM Shin, Y Luo et al. Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy, 89, 106376(2021).

[46] A Gautam, RP Saini. A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. J Energy Storage, 27, 101046(2020).

[47] A Makki, S Omer, H Sabir. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sustainable Energy Rev, 41, 658-684(2015).

[48] Y Yang, ZL Wang. Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy, 14, 245-256(2015).

[49] FR Fan, ZQ Tian, ZL Wang. Flexible triboelectric generator. Nano Energy, 1, 328-334(2012).

[50] YQ Yang, XG Guo, ML Zhu, ZD Sun, ZX Zhang et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv Energy Mater, 13, 2203040(2023).

[51] ZL Wang, JH Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242-246(2006).

[52] D Champier. Thermoelectric generators: a review of applications. Energy Convers Manag, 140, 167-181(2017).

[53] R Sivasubramanian, CA Vaithilingam, SS Indira, S Paiman, N Misron et al. A review on photovoltaic and nanogenerator hybrid system. Mater Today Energy, 20, 100772(2021).

[54] D Das, P Kalita, O Roy. Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development. Renew Sustainable Energy Rev, 84, 111-130(2018).

[55] J Wang, F Xiao, H Zhao. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renew Sustainable Energy Rev, 151, 111522(2021).

[56] VA Sharov, PA Alekseev, BR Borodin, MS Dunaevskiy, RR Reznik et al. InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation. ACS Appl Energy Mater, 2, 4395-4401(2019).

[57] S Bensmail, D Rekioua, H Azzi. Study of hybrid photovoltaic/fuel cell system for stand-alone applications. Int J Hydrogen Energy, 40, 13820-13826(2015).

[58] YD Chen, Y Jie, JQ Zhu, QX Lu, Y Cheng et al. Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Res, 15, 2069-2076(2022).

[59] R Cao, JN Wang, Y Xing, WX Song, NW Li et al. A self-powered lantern based on a triboelectric-photovoltaic hybrid nanogenerator. Adv Mater, 3, 1700371(2018).

[60] XH Le, XG Guo, C Lee. Evolution of micro-nano energy harvesting technology—scavenging energy from diverse sources towards self-sustained micro/nano systems. Nanoenergy Adv, 3, 101-125(2023).

[61] CK Qiu, F Wu, C Lee, MR Yuce. Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy, 70, 104456(2020).

[62] A Luque, S Hegedus. Handbook of Photovoltaic Science and Engineering(2011).

[63] J Halme, P Vahermaa, K Miettunen, P Lund. Device physics of dye solar cells. Adv Mater, 22, E210-E234(2010).

[64] TM Clarke, JR Durrant. Charge photogeneration in organic solar cells. Chem Rev, 110, 6736-6767(2010).

[65] H Li, JJ Zhou, LG Tan, MH Li, CF Jiang et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci Adv, 8, eabo7422(2022).

[66] YN Sun, MJ Chang, LX Meng, XJ Wan, HH Gao et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat Electron, 2, 513-520(2019).

[67] ZY Yang, JZ Fan, AH Proppe, FPGD Arquer, D Rossouw et al. Mixed-quantum-dot solar cells. Nat Commun, 8, 1325(2017).

[68] AK Rath, M Bernechea, L Martinez, FPG De Arquer, J Osmond et al. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nat Photonics, 6, 529-534(2012).

[69] X Luo, HW Luo, HJ Li, R Xia, XT Zheng et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater, 35, 2207883(2023).

[70] LK Reb, M Böhmer, B Predeschly, S Grott, CL Weindl et al. Perovskite and organic solar cells on a rocket flight. Joule, 4, 1880-1892(2020).

[71] ZL Wang, AC Wang. On the origin of contact-electrification. Mater Today, 30, 34-51(2019).

[72] ZL Wang. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Mater Today, 20, 74-82(2017).

[73] S Kim, MK Gupta, KY Lee, A Sohn, TY Kim et al. Transparent flexible graphene triboelectric nanogenerators. Adv Mater, 26, 3918-3925(2014).

[74] CR Saha, T O’Donnell, N Wang, P McCloskey. Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys, 147, 248-253(2008).

[75] JQ Zhao, GW Zhen, GX Liu, TZ Bu, WB Liu et al. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy, 61, 111-118(2019).

[76] R Hinchet, HJ Yoon, H Ryu, MK Kim, EK Choi et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 365, 491-494(2019).

[77] YL Zi, ZL Wang. Nanogenerators: an emerging technology towards nanoenergy. APL Mater, 5, 074103(2017).

[78] ZF Zhao, X Pu, CH Du, LX Li, CY Jiang et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano, 10, 1780-1787(2016).

[79] TX Xiao, X Liang, T Jiang, L Xu, JJ Shao et al. Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater, 28, 1802634(2018).

[80] Y Kang, B Wang, SG Dai, GL Liu, YP Pu et al. Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications. ACS Appl Mater Interfaces, 7, 20469-20476(2015).

[81] T Huang, C Wang, H Yu, HZ Wang, QH Zhang et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 14, 226-235(2015).

[82] C Wang, YR Hu, Y Liu, YZ Shan, XC Qu et al. Tissue‐adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation. Adv Funct Mater, 202303696(2023).

[83] Y Qin, XD Wang, ZL Wang. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 451, 809-813(2008).

[84] C Zhang, W Fan, SJ Wang, Q Wang, YF Zhang et al. Recent progress of wearable piezoelectric nanogenerators. ACS Appl Electron Mater, 3, 2449-2467(2021).

[85] S Xu, Y Qin, C Xu, YG Wei, RS Yang et al. Self-powered nanowire devices. Nat Nanotechnol, 5, 366-373(2010).

[86] KI Park, JH Son, GT Hwang, CK Jeong, J Ryu et al. Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater, 26, 2514-2520(2014).

[87] M Zhang, T Gao, JS Wang, JJ Liao, YQ Qiu et al. Single BaTiO3 nanowires-polymer fiber based nanogenerator. Nano Enery, 11, 510-517(2015).

[88] C Chang, VH Tran, JB Wang, YK Fuh, LW Lin. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett, 10, 726-731(2010).

[89] X Zhang, JF Chen, Y Wang. Hierarchical PbZrxTi1-xO3 nanowires for vibrational energy harvesting. ACS Appl Nano Mater, 1, 1461-1466(2018).

[90] XL Shi, J Zou, ZG Chen. Advanced thermoelectric design: from materials and structures to devices. Chem Rev, 120, 7399-7515(2020).

[91] L Yang, ZG Chen, MS Dargusch, J Zou. High performance thermoelectric materials: progress and their applications. Adv Energy Mater, 8, 1701797(2018).

[92] AL Oechsle, JE Heger, N Li, SS Yin, S Bernstorff et al. Correlation of thermoelectric performance, domain morphology and doping level in PEDOT: PSS thin films post‐treated with ionic liquids. Macromol Rapid Commun, 42, 2100397(2021).

[93] S Tu, T Tian, AL Oechsle, SS Yin, XY Jiang et al. Improvement of the thermoelectric properties of PEDOT: PSS films via DMSO addition and DMSO/salt post-treatment resolved from a fundamental view. Chem Eng J, 429, 132295(2022).

[94] WJ Xie, A Weidenkaff, XF Tang, QJ Zhang, J Poon et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials, 2, 379-412(2012).

[95] ZJ Liu, B Tian, Y Li, JM Lei, ZK Zhang et al. A large-area bionic skin for high-temperature energy harvesting applications. Nano Res, 16, 10245-10255(2023).

[96] T Migita, N Tachikawa, Y Katayama, T Miura. Thermoelectromotive force of some redox couples in an amide-type room-temperature ionic liquid. Electrochemistry, 77, 639-641(2009).

[97] B Orr, A Akbarzadeh, M Mochizuki, R Singh. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl Therm Eng, 101, 490-495(2016).

[98] B Iezzi, K Ankireddy, J Twiddy, MD Losego, JS Jur. Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Appl Energy, 208, 758-765(2017).

[99] A Proto, M Penhaker, S Conforto, M Schmid. Nanogenerators for human body energy harvesting. Trends Biotechnol, 35, 610-624(2017).

[100] KT Settaluri, H Lo, RJ Ram. Thin thermoelectric generator system for body energy harvesting. J Electron Mater, 41, 984-988(2012).

[101] NH Trung, N Van Toan, T Ono. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl Energy, 210, 467-476(2018).

[102] B Russ, A Glaudell, JJ Urban, ML Chabinyc, RA Segalman. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater, 1, 16050(2016).

[103] FJ Zhang, YP Zang, DZ Huang, CA Di, DB Zhu. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun, 6, 8356(2015).

[104] H Shi, CC Liu, QL Jiang, JK Xu. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater, 1, 1500017(2015).

[105] L Bießmann, LP Kreuzer, T Widmann, N Hohn, JF Moulin et al. Monitoring the swelling behavior of PEDOT: PSS electrodes under high humidity conditions. ACS Appl Mater Interfaces, 10, 9865-9872(2018).

[106] CM Palumbiny, F Liu, TP Russell, A Hexemer, C Wang et al. The crystallization of PEDOT: PSS polymeric electrodes probed in situ during printing. Adv Mater, 27, 3391-3397(2015).

[107] AL Oechsle, JE Heger, N Li, SS Yin, S Bernstorff et al. In situ observation of morphological and oxidation level degradation processes within ionic liquid post-treated PEDOT: PSS thin films upon operation at high temperatures. ACS Appl Mater Interfaces, 14, 30802-30811(2022).

[108] N Saxena, B Pretzl, X Lamprecht, L Bießmann, D Yang et al. Ionic liquids as post-treatment agents for simultaneous improvement of Seebeck coefficient and electrical conductivity in PEDOT: PSS Films. ACS Appl Mater Interfaces, 11, 8060-8071(2019).

[109] RM Kluge, N Saxena, W Chen, V Körstgens, M Schwartzkopf et al. Doping dependent in‐plane and cross‐plane thermoelectric performance of thin n‐type polymer P(NDI2OD‐T2) films. Adv Funct Mater, 30, 2003092(2020).

[110] RM Kluge, N Saxena, P Müller-Buschbaum,. A solution-processable polymer-based thin-film thermoelectric generator. Adv Energy Sustainability Res, 2, 2000060(2021).

[111] ZY Huo, DM Lee, YJ Kim, SW Kim. Solar-induced hybrid energy harvesters for advanced oxidation water treatment. IScience, 24, 102808(2021).

[112] YQ Liu, N Sun, JW Liu, Z Wen, XH Sun et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano, 12, 2893-2899(2018).

[113] LL Zhao, JL Duan, LQ Liu, JW Wang, YY Duan et al. Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy, 82, 105773(2021).

[114] ZY Ren, Q Zheng, HB Wang, H Guo, LM Miao et al. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy, 67, 104243(2020).

[115] X Pu, WX Song, MM Liu, CW Sun, CH Du et al. Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells. Adv Energy Mater, 6, 1601048(2016).

[116] B Kim, JY Song, DY Kim, MC Kim, ZH Lin et al. All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester. Nano Energy, 104, 107878(2022).

[117] T Liu, Y Zheng, YX Xu, XJ Liu, CF Wang et al. Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications. Nano Energy, 103, 107776(2022).

[118] YQ Liu, EL Li, YJ Yan, ZN Lin, QZ Chen et al. A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy, 86, 106118(2021).

[119] C Xu, XD Wang, ZL Wang. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc, 131, 5866-5872(2009).

[120] C Xu, ZL Wang. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv Mater, 23, 873-877(2011).

[121] R Ahmed, Y Kim, Zeeshan, W Chun. Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films. Energies, 12, 229(2019).

[122] GC Yoon, KS Shin, MK Gupta, KY Lee, JH Lee et al. High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy, 12, 547-555(2015).

[123] X Liu, J Li, ZZ Fang, C Wang, LS Shu et al. Ultraviolet-protecting, flexible and stable photovoltaic-assisted piezoelectric hybrid unit nanogenerator for simultaneously harvesting ultraviolet light and mechanical energies. J Mater Sci, 55, 15222-15237(2020).

[124] YM Kim, W Kim, DW Choi, DH Choi. Reliable output performance of a photovoltaic–piezoelectric hybridized energy harvester with an automatic position-adjustable bending instrument. Int. J Precis Eng Manuf - Green Technol, 9, 1077-1086(2022).

[125] DH Lee. Direct parallel and hybrid power control scheme of a low-power PV and piezoelectric energy harvesting module. J Electr Eng Technol, 16, 2045-2053(2021).

[126] P Sundarraj, D Maity, SS Roy, RA Taylor. Recent advances in thermoelectric materials and solar thermoelectric generators-a critical review. RSC Adv, 4, 46860-46874(2014).

[127] X Ju, ZF Wang, G Flamant, P Li, WY Zhao. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Sol Energy, 86, 1941-1954(2012).

[128] YL Li, S Witharana, H Cao, M Lasfargues, Y Huang et al. Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system. Particuology, 15, 39-44(2014).

[129] Y Deng, W Zhu, Y Wang, YM Shi. Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design. Sol Energy, 88, 182-191(2013).

[130] L Xu, Y Xiong, AY Mei, Y Hu, YG Rong et al. Efficient perovskite photovoltaic‐thermoelectric hybrid device. Adv Energy Mater, 8, 1702937(2018).

[131] TJ Hsueh, JM Shieh, YM Yeh. Hybrid Cd‐free CIGS solar cell/TEG device with ZnO nanowires. Prog Photovolt Res Appl, 23, 507-512(2015).

[132] ZY Liu, B Sun, Y Zhong, XY Liu, JH Han et al. Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy, 38, 457-466(2017).

[133] YP Zhou, YL He, Y Qiu, QL Ren, T Xie. Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method. Appl Energy, 207, 18-26(2017).

[134] JP Jurado, B Dörling, O Zapata-Arteaga, AR Goñi, M Campoy-Quiles. Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics. J Mater Chem C, 9, 2123-2132(2021).

[135] KW Zhang, YH Wang, Y Yang. Structure design and performance of hybridized nanogenerators. Adv Funct Mater, 29, 1806435(2019).

[136] KW Zhang, ZL Wang, Y Yang. Enhanced P3HT/ZnO nanowire array solar cells by pyro-phototronic effect. ACS Nano, 10, 10331-10338(2016).

[137] HY Shao, Z Wen, P Cheng, N Sun, QQ Shen et al. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 39, 608-615(2017).

[138] Y Yang, HL Zhang, G Zhu, S Lee, ZH Lin et al. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano, 7, 785-790(2013).

[139] HJ Yoon, SS Kwak, SM Kim, SW Kim. Aim high energy conversion efficiency in triboelectric nanogenerators. Sci Technol Adv Mater, 21, 683-688(2020).

Tianxiao Xiao, Suo Tu, Suzhe Liang, Renjun Guo, Ting Tian, Peter Müller-Buschbaum. Solar cell-based hybrid energy harvesters towards sustainability[J]. Opto-Electronic Science, 2023, 2(6): 230011
Download Citation