• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823001 (2021)
Kun Liao, Tianyi Gan, Xiaoyong Hu*, and Qihuang Gong
Author Affiliations
  • State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/AOS202141.0823001 Cite this Article Set citation alerts
    Kun Liao, Tianyi Gan, Xiaoyong Hu, Qihuang Gong. On-Chip Nanophotonic Devices Based on Dielectric Metasurfaces[J]. Acta Optica Sinica, 2021, 41(8): 0823001 Copy Citation Text show less
    References

    [1] Chen H T, Taylor A J, Yu N. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [2] Holloway C L, Kuester E F, Gordon J A et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 54, 10-35(2012). http://dx.doi.org/10.1109/map.2012.6230714

    [3] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [4] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014). http://europepmc.org/abstract/med/24863731

    [5] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [6] Shitrit N, Yulevich I, Maguid E et al. Spin-optical metamaterial route to spin-controlled photonics[J]. Science, 340, 724-726(2013). http://www.opticsinfobase.org/abstract.cfm?uri=FiO-2013-FTu1F.1

    [7] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [8] Chong S, Hui L, Shining Z. Transformation optics based on metasurfaces[J]. Science Bulletin, 64, 793-796(2019).

    [9] Yin X, Ye Z, Rho J et al. Photonic spin Hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [10] Ma G C, Yang M, Xiao S W et al. Acoustic metasurface with hybrid resonances[J]. Nature Materials, 13, 873-878(2014). http://europepmc.org/abstract/med/24880731

    [11] High A A, Devlin R C, Dibos A et al. Visible-frequency hyperbolic metasurface[J]. Nature, 522, 192-196(2015).

    [12] Bliokh K Y. Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [13] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [14] Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 5, 274-317(2013).

    [15] Marpaung D, Roeloffzen C, Heideman R et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 7, 506-538(2013).

    [16] Koos C, Vorreau P, Vallaitis T et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nature Photonics, 3, 216-219(2009).

    [17] Willner A E, Khaleghi S, Chitgarha M R et al. All-optical signal processing[J]. Journal of Lightwave Technology, 32, 660-680(2014).

    [18] Li M. Pernice W H P, Xiong C, et al. Harnessing optical forces in integrated photonic circuits[J]. Nature, 456, 480-484(2008).

    [19] Nagarajan R, Joyner C H, Schneider R P et al. Large-scale photonic integrated circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 50-65(2005).

    [20] Su Y K, Zhang Y, Qiu C Y et al. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications[J]. Advanced Materials Technologies, 5, 1901153(2020). http://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201901153

    [21] Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction[J]. Light: Science & Applications, 1, e1(2012).

    [22] Foster M A, Turner A C, Sharping J E et al. Broad-band optical parametric gain on a silicon photonic chip[J]. Nature, 441, 960-963(2006).

    [23] Chen S, Liu W, Li Z et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 32, e1805912(2020).

    [24] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).

    [25] Cheben P, Halir R, Schmid J H et al. Subwavelength integrated photonics[J]. Nature, 560, 565-572(2018).

    [26] Sun L, Zhang Y, He Y et al. Subwavelength structured silicon waveguides and photonic devices[J]. Nanophotonics, 9, 1321-1340(2020).

    [27] Zhao C L, Zhang J S. Plasmonic demultiplexer and guiding[J]. ACS Nano, 4, 6433-6438(2010).

    [28] Sun S, He Q, Xiao S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [29] Xie Y B, Wang W Q, Chen H Y et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications, 5, 5553(2014).

    [30] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Advanced Optical Materials, 6, 1701201(2018).

    [31] Xu Y D, Fu Y Y, Chen H Y. Planar gradient metamaterials[J]. Nature Reviews Materials, 1, 16067(2016).

    [32] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).

    [33] Choudhury S M, Wang D, Chaudhuri K et al. Material platforms for optical metasurfaces[J]. Nanophotonics, 7, 959-987(2018). http://www.degruyter.com/document/doi/10.1515/nanoph-2017-0130/html

    [34] Guo R, Decker M, Setzpfandt F et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas[J]. Science Advances, 3, e1700007(2017).

    [35] Wang C, Li Z, Kim M H et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides[J]. Nature Communications, 8, 2098(2017).

    [36] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [37] Yao C, Singh SC. ElKabbash M, et al. Quasi-rhombus metasurfaces as multimode interference couplers for controlling the propagation of modes in dielectric-loaded waveguides[J]. Optics Letters, 44, 1654-1657(2019).

    [38] Guo X, Ding Y, Chen X et al. 6(29): eabb4142(2020).

    [39] Meng Y, Hu F T, Liu Z T et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization[J]. Optics Express, 27, 16425-16439(2019). http://www.researchgate.net/publication/333433705_Chip-integrated_metasurface_for_versatile_and_multi-wavelength_control_of_light_couplings_with_independent_phase_and_arbitrary_polarization/download

    [40] Meng Y, Liu Z T, Xie Z W et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface[J]. Photonics Research, 8, 564-576(2020). http://www.researchgate.net/publication/341822414_Supplementary_Slides_-_Versatile_on-chip_light-coupling_and_demultiplexing_from_arbitrary_polarizations_to_controlled_waveguide_modes_using_integrated_dielectric_metasurface

    [41] Cheben P, Schmid J H, Wang S R et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency[J]. Optics Express, 23, 22553-22563(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-17-22553

    [42] Schuller J A, Barnard E S, Cai W S et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [43] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=19531599&site=ehost-live

    [44] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010). http://www.nature.com/nphoton/journal/v4/n2/abs/nphoton.2009.282.html

    [45] Fan Y L, Cluzel B, Petit M et al. 2D waveguided Bessel beam generated using integrated metasurface-based plasmonic axicon[J]. ACS Applied Materials & Interfaces, 12, 21114-21119(2020). http://pubs.acs.org/doi/10.1021/acsami.0c03420

    [46] Fan Y L, Le Roux X, Korovin A et al. Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain[J]. ACS Nano, 11, 4599-4605(2017). http://pubs.acs.org/doi/10.1021/acsnano.7b00150

    [47] Arango F B, Kwadrin A, Koenderink A F. Plasmonic antennas hybridized with dielectric waveguides[J]. ACS Nano, 6, 10156-10167(2012). http://www.ncbi.nlm.nih.gov/pubmed/23066710

    [48] Xu H N, Dai D X, Shi Y C. Metamaterial polarization beam splitter: ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials[J]. Laser & Photonics Reviews, 13, 1970021(2019).

    [49] Park J B, Yeo D M, Shin S Y. Variable optical mode generator in a multimode waveguide[J]. IEEE Photonics Technology Letters, 18, 2084-2086(2006).

    [50] Mohanty A, Zhang M, Dutt A et al. Quantum interference between transverse spatial waveguide modes[J]. Nature Communications, 8, 14010(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5263888/

    [51] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b04264

    [52] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Reviews, 14, 2000058(2020). http://www.researchgate.net/publication/342073665_Ultra-Compact_and_Ultra-Broadband_Guided-Mode_Exchangers_on_Silicon

    [53] Wang Z, Li T, Soman A et al. On-chip wavefront shaping with dielectric metasurface[J]. Nature Communications, 10, 3547(2019). http://www.ncbi.nlm.nih.gov/pubmed/31391468

    [54] Wang H W, Zhang Y, He Y et al. Compact silicon waveguide mode converter employing dielectric metasurface structure[J]. Advanced Optical Materials, 1801191(2018).

    [55] Yao C N, Wang Y L, Zhang J H et al. Dielectric nanoaperture metasurfaces in silicon waveguides for efficient and broadband mode conversion with an ultrasmall footprint[J]. Advanced Optical Materials, 8, 2000529(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/adom.202000529

    [56] Liao K, Gan T Y, Hu X Y et al. AI-assisted on-chip nanophotonic convolver based on silicon metasurface[J]. Nanophotonics, 9, 3315-3322(2020). http://www.degruyter.com/view/journals/nanoph/ahead-of-print/article-10.1515-nanoph-2020-0069/article-10.1515-nanoph-2020-0069.xml?intcmp=trendmd

    [57] Su L, Piggott A Y, Sapra N V et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer[J]. ACS Photonics, 5, 301-305(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.7b00987

    [58] Piggott A Y, Lu J, Lagoudakis K G et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 9, 374-377(2015). http://www.nature.com/articles/nphoton.2015.69

    [59] Fan Y L, le Roux X, Lupu A et al. Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer[J]. Photonics Research, 7, 359-362(2019).

    [60] Xu H N, Dai D X, Shi Y C. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth[J]. Photonics Research, 7, 1432-1439(2019). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201912011.htm

    [61] Halir R, Cheben P. Luque-González J M, et al. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial[J]. Laser & Photonics Reviews, 10, 1039-1046(2016).

    Kun Liao, Tianyi Gan, Xiaoyong Hu, Qihuang Gong. On-Chip Nanophotonic Devices Based on Dielectric Metasurfaces[J]. Acta Optica Sinica, 2021, 41(8): 0823001
    Download Citation