• Laser & Optoelectronics Progress
  • Vol. 58, Issue 20, 2000002 (2021)
Fei Wang1、2、3、4, Xiaochang Yu1、2、3、4, Qingling Luo5, Chengyang Zhou5, and Yiting Yu1、2、3、4、6、*
Author Affiliations
  • 1Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, Guangdong 518057, China
  • 2School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 3Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 4Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 5Honors College, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
  • 6Ningbo Research Institute of Northwestern Polytechnical University, Ningbo, Zhejiang 315103, China
  • show less
    DOI: 10.3788/LOP202158.2000002 Cite this Article Set citation alerts
    Fei Wang, Xiaochang Yu, Qingling Luo, Chengyang Zhou, Yiting Yu. Research Progress and Applications of Spectral Imaging System on Chip[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2000002 Copy Citation Text show less
    References

    [2] Dash J P, Watt M S, Pearse G D et al. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1-14(2017).

    [3] Wang Y, Gong Y. Design of multispectral imaging spectrometer using linear variable filter[J]. Laser & Optoelectronics Progress, 53, 013003(2016).

    [4] Velasco A V, Cheben P, Bock P J et al. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides[J]. Optics Letters, 38, 706-708(2013).

    [5] Ma X, Li M Y, He J J. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array[J]. IEEE Photonics Journal, 5, 6600807(2013).

    [6] Zou J, Ma X, Xia X et al. High resolution and ultra-compact on-chip spectrometer using bidirectional edge-input arrayed waveguide grating[J]. Journal of Lightwave Technology, 38, 4447-4453(2020).

    [7] Heidari E, Xu X C, Chung C J et al. On-chip Fourier transform spectrometer on silicon-on-sapphire[J]. Optics Letters, 44, 2883-2886(2019).

    [8] Herrero-Bermello A, Li J, Khazaei M et al. On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors[J]. Optics Letters, 44, 5840-5843(2019).

    [9] Ma X, Zou J, Li W H et al. Miniature spectrometer based on a Fourier transform spectrometer chip and a commercial photodetector array[J]. Chinese Optics Letters, 17, 123001(2019).

    [10] Podmore H, Scott A, Cheben P et al. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer[J]. Optics Letters, 42, 1440-1443(2017).

    [11] Wang W P, Jin L. Research progress of on-chip spectrometer based on the silicon photonics platform[J]. Spectroscopy and Spectral Analysis, 40, 333-342(2020).

    [12] Wang H J, Li Q F, Shi W. On-chip polarization-insensitive Fourier transform spectrometer[J]. Optics Letters, 45, 1479-1482(2020).

    [13] Paudel U, Rose T. Ultra-high resolution and broadband chip-scale speckle enhanced Fourier-transform spectrometer[J]. Optics Express, 28, 16469-16485(2020).

    [14] Yu X C, Zhao J C, Yu Y T. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision Engineering, 27, 999-1012(2019).

    [15] Meng Q H, Huang G H, Lai J J et al. Fabrication of 128×128 MEMS tunable F-P cavity optical filter array with surface micromachining[J]. Infrared Physics & Technology, 105, 103199(2020).

    [16] Chen Y H, Wang C T, Yu C P et al. Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time[J]. Optics Express, 19, 25441-25446(2011).

    [17] Cong R, Wang Y K, Chen G et al. Methods for suppressing multi-order transmission peaks of tunable Fabry-Perot filters[J]. Acta Optica Sinica, 39, 0323003(2019).

    [18] Lin J N, Tong Q, Lei Y et al. Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection[J]. Applied Optics, 56, 1925-1929(2017).

    [19] Williams C, Gordon G S D, Wilkinson T D et al. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays[J]. ACS Photonics, 6, 3132-3141(2019).

    [20] Song S G, Gibson D, Ahmadzadeh S et al. Low-cost hyper-spectral imaging system using a linear variable bandpass filter for agritech applications[J]. Applied Optics, 59, A167-A175(2020).

    [21] Zhao J C, Yu X C, Yang X M et al. Polarization independent subtractive color printing based on ultrathin hexagonal nanodisk-nanohole hybrid structure arrays[J]. Optics Express, 25, 23137-23145(2017).

    [24] Feng T, Jin W Q, Si J J. Uncooled infrared FPA: a review and forecast[J]. Infrared Technology, 37, 177-184(2015).

    [25] Manda S, Matsumoto R, Saito S et al. High-definition visible-SWIR InGaAs image sensor using Cu-Cu bonding of III-V to silicon wafer[C]. //2019 IEEE International Electron Devices Meeting (IEDM), December 7-11, 2019, San Francisco, CA, USA., 16.7.1-16.7.4(2019).

    [27] Burgos S P, Yokogawa S, Atwater H A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor[J]. ACS Nano, 7, 10038-10047(2013).

    [28] Ma L, Zhao Z J, Zhou F J et al. Assembly system for miniature optical parts and experimental study[J]. Optics and Precision Engineering, 26, 1462-1469(2018).

    [29] Huang H T. Research on key technologies of micro vision in micro assembly[D](2018).

    [30] Jain R K, Majumder S, Ghosh B et al. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper[J]. Journal of Manufacturing Systems, 35, 76-91(2015).

    [31] Yang M Y, Li M Y, He J J. Static FT imaging spectrometer based on a modified waveguide MZI array[J]. Optics Letters, 42, 2675-2678(2017).

    [32] Lamponi M, Keyvaninia S, Jany C et al. Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler[J]. IEEE Photonics Technology Letters, 24, 76-78(2012).

    [33] Tripathi D K, Jiang F, Rafiei R et al. Suspended large-area MEMS-based optical filters for multispectral shortwave infrared imaging applications[J]. Journal of Microelectromechanical Systems, 24, 1102-1110(2015).

    [34] Antoszewski J, Milne J, Dell J M et al. Recent developments in MEMS-based tunable IR detectors[C]. //SENSORS, 2008 IEEE, October 26-29, 2008, Lecce, Italy., 942-944(2008).

    [35] Gonzalez P, Pichette J, Vereecke B et al. An extremely compact and high-speed line-scan hyperspectral imager covering the SWIR range[J]. Proceedings of SPIE, 10656, 106560L(2018).

    [36] Carrano J, Brown J, Perconti P et al. Tuning in to detection[EB/OL]. (2004-08-01)[2020-11-05]. https://spie.org/news/tuning-in-to-detection?SSO=1

    [37] Faraone L. MEMS based tunable short-wavelength infrared sensors[C]. //2005 IEEE LEOS Annual Meeting Conference Proceedings, October 22-28, 2005, Sydney, NSW, Australia., 249-250(2005).

    [38] Musca C A, Antoszewski J, Winchester K J et al. Monolithic integration of an infrared photon detector with a MEMS-based tunable filter[J]. IEEE Electron Device Letters, 26, 888-890(2005).

    [39] Geelen B, Tack N, Lambrechts A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[J]. Proceedings of SPIE, 8974, 89740L(2014).

    [41] Rissanen A, Saari H, Rainio K et al. MEMS FPI-based smartphone hyperspectral imager[J]. Proceedings of SPIE, 9855, 985507(2016).

    [42] Ma X J, Liu R, Li C X et al. Hyperspectral imaging of in vivo tissues: a review[J]. Laser & Optoelectronics Progress, 57, 080002(2020).

    [43] Sun W, Chen R L, Luo J X. A review of research on hyperspectral imaging technology in bloodstain detection applications[J]. Laser & Optoelectronics Progress, 58, 0600007(2021).

    [44] Nagaoka T, Nakamura A, Kiyohara Y et al. Melanoma screening system using hyperspectral imager attached to imaging fiberscope[C]. //2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 28-September 1, 2012, San Diego, CA, USA., 3728-3731(2012).

    [45] Park S M, Visbal-Onufrak M A, Haque M M et al. mHealth spectroscopy of blood hemoglobin with spectral super-resolution[J]. Optica, 7, 563-573(2020).

    [46] Ge Y, Jia Z Z. The concept of future combat and combat style under the revolution in military affairs[J]. Military Digest, 55-58(2020).

    [49] Xu Y C. Finnish nanosatellite carries the world’s smallest infrared hyperspectral camera[EB/OL]. (2018-12-23)[2020-09-23]. https://baijiahao.baidu.com/s?id=1620613396680949110&wfr=sp

    [50] Geelen B, Blanch C, Gonzalez P et al. A tiny VIS-NIR snapshot multispectral camera[J]. Proceedings of SPIE, 9374, 937414(2015).

    [52] Behmann J, Acebron K, Emin D et al. Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection[J]. Sensors, 18, 441(2018).

    [53] Zhao Y Q, Liu X Y, Tang C L. Progress in spectral filter arrays[J]. Laser & Optoelectronics Progress, 57, 190004(2020).

    [54] Wang X Q, Huang S L, Yu Y H et al. A compact long-wavelength near-infrared IOT node and its performance experiments[J]. Journal of Infrared and Millimeter Waves, 37, 42-46(2018).

    [55] Gao S, Wang Q H, Fu D D et al. Nondestructive detection of sugar content and firmness of red globe grape by hyperspectral imaging[J]. Acta Optica Sinica, 39, 1030004(2019).

    [56] Fang Y M, Yang F, Li X Q. Detection of damage on the surface of Korla fragrant pear using hyperspectral images[J]. Laser & Optoelectronics Progress, 57, 141017(2020).

    Fei Wang, Xiaochang Yu, Qingling Luo, Chengyang Zhou, Yiting Yu. Research Progress and Applications of Spectral Imaging System on Chip[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2000002
    Download Citation