• Journal of Semiconductors
  • Vol. 40, Issue 7, 071904 (2019)
Yating Lin, Yongzheng Ye, and Wei Fang
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1088/1674-4926/40/7/071904 Cite this Article
    Yating Lin, Yongzheng Ye, Wei Fang. Electrically driven single-photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071904 Copy Citation Text show less
    References

    [1]

    [2] Q C Sun, Y L Mao, S J Chen et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat Photon, 10, 671(2016).

    [3] J L O’brien. Optical quantum computing. Science, 318, 1567(2007).

    [4] M Arcari, I Söllner, A Javadi et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett, 113, 093603(2014).

    [5] J Carolan, C Harrold, C Sparrow et al. Universal linear optics. Science, 349, 711(2015).

    [6] J Wang, S Paesani, Y Ding et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285(2018).

    [7] B J Smith, D Kundys, N Thomas-Peter et al. Phase-controlled integrated photonic quantum circuits. Opt Express, 17, 13516(2009).

    [8] H Takesue, N Matsuda, E Kuramochi et al. An on-chip coupled resonator optical waveguide single-photon buffer. Nat Commun, 4, 2725(2013).

    [9] W H Pernice, C Schuck, O Minaeva et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun, 3, 1325(2012).

    [10] J Sprengers, A Gaggero, D Sahin et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl Phys Lett, 99, 181110(2011).

    [11] P Senellart, G Solomon, A White. High-performance semiconductor quantum-dot single-photon sources. Nat Nano, 12, 1026(2017).

    [12] Z Yuan, B E Kardynal, R M Stevenson et al. Electrically driven single-photon source. Science, 295, 102(2002).

    [13] M Ward, T Farrow, P See et al. Electrically driven telecommunication wavelength single-photon source. Appl Phys Lett, 90, 063512(2007).

    [14] S Deshpande, J Heo, A Das et al. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire. Nat Commun, 4, 1675(2013).

    [15] S Deshpande, T Frost, A Hazari et al. Electrically pumped single-photon emission at room temperature from a single In- GaN/GaN quantum dot. Appl Phys Lett, 105, 141109(2014).

    [16] A Nowak, S Portalupi, V Giesz et al. Deterministic and electrically tunable bright single-photon source. Nat Commun, 5, 3240(2014).

    [17] T Heindel, C Schneider, M Lermer et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 96, 011107(2010).

    [18] X Lin, X Dai, C Pu et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat Commun, 8, 1132(2017).

    [19] S Khasminskaya, F Pyatkov, K Słowik et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat Photon, 10, 727(2016).

    [20] L Zhang, Y J Yu, L G Chen et al. Electrically driven single-photon emission from an isolated single molecule. Nat Commun, 8, 580(2017).

    [21] A Lohrmann, S Pezzagna, I Dobrinets et al. Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl Phys Lett, 99, 251106(2011).

    [22] N Mizuochi, T Makino, H Kato et al. Electrically driven single-photon source at room temperature in diamond. Nat Photon, 6, 299(2012).

    [23] Y Doi, T Makino, H Kato et al. Deterministic electrical charge-state initialization of single nitrogen-vacancy center in diamond. Phys Rev X, 4, 011057(2014).

    [24] A Lohrmann, N Iwamoto, Z Bodrog et al. Single-photon emitting diode in silicon carbide. Nat Commun, 6, 7783(2015).

    [25] R J Glauber. The quantum theory of optical coherence. Phys Rev, 130, 2529(1963).

    [26] R H Brown, R Q Twiss, g surName. Interferometry of the intensity fluctuations in light-i. basic theory: the correlation between photons in coherent beams of radiation. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 242, 300(1957).

    [27] H Wang, Z C Duan, Y H Li et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys Rev Lett, 116, 213601(2016).

    [28] C K Hong, Z Y Ou, L Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 59, 2044(1987).

    [29] A Imamog, Y Yamamoto et al. Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunnel- ing in quantum confined p–i–n heterojunctions. Phys Rev Lett, 72, 210(1994).

    [30] M Gschrey, F Gericke, A Schüßler et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl Phys Lett, 102, 251113(2013).

    [31] N Somaschi, V Giesz, L De Santis et al. Near-optimal single-photon sources in the solid state. Nat Photonics, 10, 340(2016).

    [32] M Reischle, G Beirne, W M Schulz et al. Electrically pumped single-photon emission in the visible spectral range up to 80 K. Opt Express, 16, 12771(2008).

    [33] A Schlehahn, A Thoma, P Munnelly et al. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photon, 1, 011301(2016).

    [34] S Deshpande, P Bhattacharya. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K. Appl Phys Lett, 103, 241117(2013).

    [35] W Quitsch, T Kümmell, A Gust et al. Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K. Appl Phys Lett, 105, 091102(2014).

    [36] P Michler, A Imamoglu, M Mason et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968(2000).

    [37] A Högele, C Galland, M Winger et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett, 100, 217401(2008).

    [38]

    [39] B Lounis, W E Moerner. Single photons on demand from a single molecule at room temperature. Nature, 407, 491(2000).

    [40] M Nothaft, S Höhla, F Jelezko et al. Electrically driven photon antibunching from a single molecule at room temperature. Nat Commun, 3, 628(2012).

    [41] M W Doherty, N B Manson, P Delaney et al. The nitrogen-vacancy colour centre in diamond. Phys Rep, 528, 1(2013).

    [42] I A Khramtsov, M Agio, D Y Fedyanin. Dynamics of single-photon emission from electrically pumped color centers. Phys Rev Appl, 8, 024031(2017).

    [43] Ü Özgür, Y I Alivov, C Liu et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 98, 041301(2005).

    [44] S Choi, A M Berhane, A Gentle et al. Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature. ACS Appl Mater Interfaces, 7, 5619(2015).

    [45] I A Khramtsov, A A Vyshnevyy, D Y Fedyanin. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide. npj Quantum Inform, 4, 15(2018).

    [46] S Manzeli, D Ovchinnikov, D Pasquier et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033(2017).

    [47] M Koperski, K Nogajewski, A Arora et al. Single photon emitters in exfoliated WSe2 structures. Nat Nano, 10, 503(2015).

    [48] C Chakraborty, L Kinnischtzke, K M Goodfellow et al. Voltage-controlled quantum light from an atomically thin semicon- ductor. Nat Nano, 10, 507(2015).

    [49] Y M He, G Clark, J R Schaibley et al. Single quantum emitters in monolayer semiconductors. Nat Nano, 10, 497(2015).

    [50] C Palacios-berraquero, M Barbone, D M Kara et al. Atomically thin quantum light-emitting diodes. Nat Commun, 7, 12978(2016).

    [51] T T Tran, K Bray, M J Ford et al. Quantum emission from hexagonal boron nitride monolayers. Nat Nano, 11, 37(2016).

    [52] M Conterio, N Sköld, D Ellis et al. A quantum dot single photon source driven by resonant electrical injection. Appl Phys Lett, 103, 162108(2013).

    Yating Lin, Yongzheng Ye, Wei Fang. Electrically driven single-photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071904
    Download Citation