• Matter and Radiation at Extremes
  • Vol. 5, Issue 4, 045401 (2020)
V. D. Zvorykina), A. V. Shutov, and N. N. Ustinovskii
Author Affiliations
  • Lebedev Physical Institute of RAS, Leninskiy Pr. 53, Moscow 119991, Russia
  • show less
    DOI: 10.1063/5.0004130 Cite this Article
    V. D. Zvorykin, A. V. Shutov, N. N. Ustinovskii. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility[J]. Matter and Radiation at Extremes, 2020, 5(4): 045401 Copy Citation Text show less
    References

    [1] V. A. Shcherbakov. Ignition of a laser-fusion target by a focusing shock wave. Sov. J. Plasma Phys., 9, 240(1983).

    [2] C. D. Zhou, L. J. Perkins, R. Betti, W. Theobald, K. S. Anderson, A. A. Solodov. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [3] R. S. Craxton et al. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [4] V. T. Tikhonchuk. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion. Nucl. Fusion, 59, 032001(2019).

    [5] J. D. Lindl, J. D. Sethian, G. B. Logan, D. D. Meyerhofer, B. A. Hammel, S. A. Payne. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme. Plasma Phys. Control. Fusion, 45, A217(2003).

    [6] T. C. Sangster, D. R. Harding, R. L. McCrory, V. N. Goncharov, S. J. Loucks et al. Overview of inertial fusion research in the United States. Nucl. Fusion, 47, S686(2007).

    [7] S. E. Bodner, J. D. Sethian, A. J. Schmitt. Laser requirements for a laser fusion energy power plant. High Power Laser Sci. Eng., 1, 2(2013).

    [8] D. Kehne, M. Wolford, F. Hegeler, R. Lehmberg, S. Obenschain et al. High-energy krypton fluoride lasers for inertial fusion. Appl. Opt., 54, F103(2015).

    [9] P. S. Bowling, L. A. Rosocha, M. D. Burrows, J. Hanlon, M. Kang et al. An overview of Aurora: A multi-kilojoule KrF laser system for inertial confinement fusion. Laser Part. Beams, 4, 55(1986).

    [10] J. A. Sullivan. Design of a 100-kJ KrF power amplifier module. Fusion Tech., 11, 684(1987).

    [11] R. R. Peterson, I. N. Sviatoslavsky, G. L. Kulcinski, M. E. Sawan, J. J. MacFarlane et al. A KrF laser driven inertial fusion reactor “SOMBRERO”. Fusion Tech., 21, 1470(1992).

    [12] W. R. Meyer, C. W. von Rosenberg. Economic modeling and parametric studies for SOMBRERO ‒ A laser-driven IFE power plant. Fusion Tech., 21, 1552(1992).

    [13] C. W. von Rosenberg. KrF driver system architecture for a laser fusion power plant. Fusion Tech., 21, 1600(1992).

    [14] W. R. Meyer. Osiris and SOMBRERO inertial fusion power plant designs summary, conclusions, and recommendations. Fusion Eng. Des., 25, 145(1994).

    [15] R. H. Lehmberg, J. L. Giuliani, A. J. Schmitt. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers. J. Appl. Phys., 106, 023103(2009).

    [16] V. D. Zvorykin, A. A. Ionin, N. V. Didenko, I. V. Kholin, A. V. Konyashchenko et al. GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams, 25, 435(2007).

    [17] V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, G. A. Mesyats, L. V. Seleznev et al. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti: sapphire—KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier. Quantum Electron., 43, 332(2013).

    [18] A. J. Schmitt, J. D. Sethian, S. P. Obenschain. A laser based fusion test facility. Fusion Sci. Tech., 56, 594(2009).

    [19] J. Hanlon, L. A. Rosocha, M. Kang, J. McLeod, B. L. Kortegaard et al. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion. Fusion Tech. 11, 4, 497(1987).

    [20] M. J. Shaw, G. J. Hirst, B. Edwards, M. H. Key, C. J. Hooker et al. Development of high-performance KrF and Raman laser facilities for inertial confinement fusion and other applications. Laser Part. Beams, 11, 331(1993).

    [21] Y. Owadano, Y. Matsumoto, I. Okuda, I. Matsushima, E. Takahashi et al. Overview of ‘super-ASHURA’ KrF laser program. Fusion Eng. Des., 44, 91(1999).

    [22] W. Ma, N. Wang, Y. Shan, D. Yang, J. Ma et al. A six-beam high-power KrF excimer laser system with energy of 100 J/23 ns. Laser Part. Beams, 20, 123(2002).

    [23] D. Kehne, M. Wolford, R. Lehmberg, S. Obenschain, J. Weaver. Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser. Appl. Opt., 56, 8618(2017).

    [24] I. A. McIntyre, C. K. Rhodes. High power ultrafast excimer lasers. J. Appl. Phys., 69, R1(1991).

    [25] K. Boyer, T. S. Luk, G. Gibson, C. K. Rhodes, A. McPherson. Ultrahigh-intensity KrF* laser system. Opt. Lett., 14, 1113(1989).

    [26] E. J. Divall, G. J. Hirst, C. B. Edwards, C. J. Hooker et al. Titania- a 1020 Wcm−2 ultraviolet laser. J. Mod. Opt., 43, 1025(1996).

    [27] G. J. Hirst, C. J. Hooker, I. N. Ross, M. J. Shaw, J. M. Dodson et al. Ultrahigh-brightness KrF laser system for fast ignition studies. Fusion Eng. Des., 44, 209(1999).

    [28] I. Okuda, Y. Owadano, K. A. Tanaka, E. Takahashi, I. Matsushima, Y. Matsumoto, D. D. Meyerhofer, J. Meyer-ter-Vehn et al. KrF laser program at AIST. Inertial Fusion Sciences and Applications 2001, 465-469.

    [29] A. O. Levchenko, V. D. Zvorykin, N. N. Ustinovskii. Amplification of subpicosecond UV laser pulses in the multistage GARPUN-MTW Ti:sapphire-KrF laser system. Quantum Electron., 40, 381(2010).

    [30] L. V. Seleznev, A. O. Levchenko, A. V. Shutov, A. A. Ionin, V. D. Zvorykin et al. Multiple filamentation of supercritical UV laser beam in atmospheric air. Nucl. Inst. Methods Phys. Res., Sect. B, 355, 227(2015).

    [31] V. D. Zvorykin, N. N. Ustinovskii, A. V. Shutov, I. V. Sinitsyn, A. O. Levchenko. Role of coherent resonant nonlinear processes in the ultrashort KrF laser pulse propagation and filamentation in air. Nucl. Inst. Methods Phys. Res., Sect. B, 369, 87(2016).

    [32] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219(1985).

    [33] N. Hopps, D. Hillier, C. Danson, D. Neely. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, e3(2015).

    [34] M. H. Key, S. Szatmàri, J. R. Houliston, I. N. Ross, P. Simon. Chirped pulse amplification in KrF lasers. Opt. Commun., 104, 350(1994).

    [35] J. Evans, A. R. Damerell, E. J. Divall, G. J. Hirst, I. N. Ross et al. A 1 TW KrF laser using chirped pulse amplification. Opt. Commun., 109, 288(1994).

    [36] M. Klapisch, R. H. Lehmberg, A. V. Deniz, C. J. Pawley, Y. Leng. Two-photon resonantly-enhanced nonlinear refractive index in Xe at 248 nm. Opt. Commun., 121, 78(1995).

    [37] M. M. Tilleman, J. H. Jacob. Short pulse amplification in the presence of absorption. Appl. Phys. Lett., 50, 121(1987).

    [38] A. Mysyrowicz, A. Couairon. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47(2007).

    [39] A. A. Ionin, V. D. Zvorykin, S. A. Goncharov, D. V. Mokrousova, S. V. Ryabchuk et al. Experimental capabilities of the GARPUN MTW Ti: sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets. Quantum Electron., 47, 319(2017).

    [40] A. V. Shutov, D. V. Mokrousova, S. A. Goncharov, I. V. Smetanin, N. N. Ustinovskii et al. Major pathway for multiphoton air ionization at 248 nm laser wavelength. Appl. Phys. Lett., 111, 224104(2017).

    [41] N. N. Ustinovskii, A. V. Shutov, S. A. Goncharov, I. V. Smetanin, D. V. Mokrousova et al. Erratum: “Major pathway for multiphoton air ionization at 248 nm laser wavelength” [Appl. Phys. Lett. 111, 224104 (2017)]. Appl. Phys. Lett., 113, 189902(2018).

    [42] P. Sprangle, B. Hafizi, A. Ting, J. R. Peñano, C. A. Kapetanakos, D. F. Gordon. Propagation of ultra-short, intense laser pulses in air. Phys. Plasmas, 11, 2865(2004).

    [43] E. Hertz, O. Faucher, V. Loriot, B. Lavorel. Measurement of high order Kerr refractive index of major air components. Opt. Exp., 17, 13429(2009).

    [44] P. Bejot, E. Hertz, V. Loriot, S. Henin, J. Kasparian et al. Higher-order Kerr terms allow ionization-free filamentation in gases. Phys. Rev. Lett., 104, 103903(2010).

    [45] P. Bejot, E. Hertz, J. Kasparian, O. Faucher, J.-P. Wolf, B. Lavorel. Transition from plasma-driven to Kerr-driven laser filamentation. Phys. Rev. Lett., 106, 243902(2011).

    [46] G. Karras, F. Billard, P. Béjot, J. Doussot, O. Faucher. Resonantly enhanced filamentation in gases. Optica, 4, 764(2017).

    [47] A. O. Levchenko, V. D. Zvorykin, A. S. Alimov, S. V. Arlantsev, B. S. Ishkhanov et al. Degradation of the transmissive optics for a laser-driven IFE power plant under electron and X-ray irradiation. Plasma Fusion Res., 8, 3405046(2013).

    [48] S. V. Arlantsev, V. I. Shvedunov, N. V. Morozov, A. S. Averyushkin, D. S. Yurov, V. D. Zvorykin. Darkening of UV optics irradiated at a CW 1-MeV linear electron accelerator. J. Nucl. Mater., 509, 73(2018).

    [49] A. P. Sergeev, P. B. Sergeev, V. D. Zvorykin. Effect of KrF laser radiation on electron-beam-induced absorption in fluorite and quartz glasses. Quantum Electron., 37, 711(2007).

    [50] G. Méchain, M. Franco, S. Tzortzakis, Y.-B. André, C. D’Amico et al. Range of plasma filaments created in air by a multi-terawatt femtosecond laser. Opt. Commun., 247, 171(2005).

    [51] R. Bourayou, M. Rodriguez, G. Mejean, J. Kasparian, J. Yu et al. Kilometer-range nonlinear propagation of femtosecond laser pulses. Phys. Rev. E, 69, 036607(2004).

    [52] A. Houard, A. Durecu, B. Prade, A. Mysyrowicz, M. Durand et al. Kilometer range filamentation. Opt. Express, 21, 26836(2013).

    [53] C. D’Amico, Y.-B. André, G. Méchain, A. Couairon, M. Franco et al. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization. Appl. Phys. B, 79, 379(2004).

    [54] J.-C. Diels, E. M. Wright, J. Schwarz, M. Kolesik, P. Rambo, J. V. Moloney. Ultraviolet filamentation in air. Opt. Commun., 180, 383(2000).

    [55] J. Schwarz, J.-C. Diels. Long distance propagation of UV filaments. J. Mod. Opt., 49, 2583(2002).

    [56] S. Tzortzakis, B. Lamouroux, A. Mysyrowicz, A. Chiron, M. Franco, B. Prade. Nonlinear propagation of subpicosecond ultraviolet laser pulses in air. Opt. Lett., 25, 1270(2000).

    [57] S. Moustaizis, S. D. Moustaizis, B. Lamouroux, A. Mysyrowicz, D. Anglos, A. Chiron, M. Franco, B. Prade. Femtosecond and picosecond ultraviolet laser filaments in air: Experiments and simulations. Opt. Commun., 197, 131(2001).

    [58] D. Mokrousova, L. Seleznev, I. Smetanin, V. Zvorykin, A. Ionin et al. Range of multiple filamentation of TW-power large-aperture KrF laser beam in atmospheric air. JOSA B, 36, G25(2019).

    [59] D. V. Mokrousova, V. D. Zvorykin, A. A. Ionin, S. A. Goncharov, S. V. Ryabchuk et al. Kerr self-defocusing of multiple filaments in TW peak power UV laser beam. Laser Phys. Lett., 13, 125404(2016).

    [60] J.-K. Diels, J. Schwarz. Analytic solution for UV filaments. Phys. Rev. A, 65, 013806(2001).

    [61] C. J. Hooker, D. C. Wilson, M. J. Shaw. Measurement of the nonlinear refractive index of air and other gases at 248 nm. Opt. Commun., 103, 153(1993).

    [62] K. Mossavi, A. Tünnermann, B. Wellegehausen. Nonlinear-optical processes in the nearresonant two-photon excitation of xenon by femtosecond KrF-excimer-laser pulses. Phys. Rev. A, 46, 2707(1992).

    [63] J. P. Roberts, R. B. Gibson, A. J. Taylor. Two-photon absorption at 248 nm in ultraviolet window materials. Opt. Lett., 13, 814(1988).

    [64] I. Okuda, M. Yano, T. Tomie. Three-photon absorption in CaF2 at 248.5 nm. Appl. Phys. Lett., 55, 325(1989).

    [65] P. Simon, H. Gerhardt, S. Szatmári. Intensity-dependent loss properties of window materials at 248 nm. Opt. Lett., 14, 1207(1989).

    [66] M. Watanabe, S. Watanabe, K. Hata. Nonlinear processes in UV optical materials at 248 nm. Appl. Phys. B, 50, 55(1990).

    [67] M. H. R. Hutchinson, Y. P. Kim. Intensity-induced nonlinear effects in UV window materials. Appl. Phys. B, 49, 469(1989).

    [68] J. P. Russel. The Raman spectrum of calcium fluoride. Proc. Phys. Soc., 85, 194(1965).

    [69] N. Krishnamurthy, R. S. Krishnan. The second order Raman spectrum of calcium fluoride. J. Phys., 26, 633(1965).

    V. D. Zvorykin, A. V. Shutov, N. N. Ustinovskii. Review of nonlinear effects under TW-power PS pulses amplification in GARPUN-MTW Ti:sapphire-KrF laser facility[J]. Matter and Radiation at Extremes, 2020, 5(4): 045401
    Download Citation