• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 051401 (2019)
Xiangxiang Huang1, Kai Feng1, Lijie He2, Jian Gong2, Jiang Chen3, and Zhuguo Li1、*
Author Affiliations
  • 1 Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2 No. 92730 Chinese People's Liberation Army, Sanya, Hainan 572000, China
  • 3 Shanghai Da Lu Laser Technology Co., Ltd., Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP56.051401 Cite this Article Set citation alerts
    Xiangxiang Huang, Kai Feng, Lijie He, Jian Gong, Jiang Chen, Zhuguo Li. Microstructure and Copper Contamination Phenomenon of Laser Cladded Aluminum Bronze Coatings on Carbon Steel Surface[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051401 Copy Citation Text show less
    References

    [1] Sheng N, Gao J, Liu Y Y. Incidence research between marine industry and resource factors in China[J]. Marine Economy, 6, 19-25(2016).

    [2] Guo M X, Pan C, Wang Z Y et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere[J]. Acta Metallurgica Sinica, 54, 65-75(2018).

    [3] Kang Q F, Hu S B, Zeng S Q et al. Heat treatment strengthening of nickel-aluminum bronze alloy for marine propeller[J]. The Chinese Journal of Nonferrous Metals, 28, 107-115(2018).

    [4] Song Q N, Zhang L, Wen J B et al. Microstructure,corrosion and cavitation erosion behavior of laser surface melted nickel aluminam bronze[J]. Electric Welding Machine, 48, 80-85(2018).

    [5] Zhou S F, Zhang T Y, Xiong Z et al. Investigation of Cu-Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding[J]. Optics & Laser Technology, 59, 131-136(2014). http://www.sciencedirect.com/science/article/pii/S0030399213004635

    [6] Gu S N, Wang G Y, Qin Y et al. Correlation between process parameters and microstructure mophologies of W-Cu composites fabricated by laser cladding[J]. Chinese Journal of Lasers, 45, 0402005(2018).

    [7] Li L Q, Yao C W, Huang J et al. Characteristics of interdendritic residual austenite in laser cladding of high hardness iron-based coating[J]. Chinese Journal of Lasers, 44, 0302011(2017).

    [8] Yang J X, Wen Q, Li Z Y et al. Influence of Ni additions on the microstructures and properties of laser clad CuAl10 coatings[J]. Chinese Journal of Lasers, 42, 0306006(2015).

    [9] Wang Y F, Li H, Sun X et al. Microstructures and formation mechanism of Fe-based amorphous coatings by broad-band laser cladding[J]. Chinese Journal of Lasers, 45, 0302006(2018).

    [10] Yang J X, Yu X, Wang Y F et al. Effect of TiC content on microstructures and properties of laser cladding TiC/Ti based composite coatings[J]. Journal of Aeronautical Materials, 38, 65-71(2018).

    [11] Chen S H, Huang J H, Xia J et al. Microstructural characteristics of a stainless steel/copper dissimilar joint made by laser welding[J]. Metallurgical and Materials Transactions A, 44, 3690-3696(2013). http://link.springer.com/article/10.1007/s11661-013-1693-z

    [12] Li N, Luo J, Zhao P et al. Microstructure and property of laser treated copper cladding on pure iron[J]. Materials Research Innovations, 18, 310-315(2014).

    [13] Wan L, Huang Y X, Lü S X et al. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel[J]. International Journal of Minerals, Metallurgy and Materials, 23, 920-927(2016). http://www.cqvip.com/QK/85313A/201608/670313200.html

    [14] Zhang Y Z, Jin J T, Tu Y et al. Microstructure and wear resistance of laser clad copper alloy coating on pure copper[J]. Heat Treatment of Metals, 34, 28-32(2009).

    [15] Lippold J C. Welding metallurgy and weldability[M]. Hoboken: John Wiley & Sons, Inc(2015).

    [16] Pei F, Liu G M, Liu X et al. Galvanic corrosion behavior of Q235 steel-red copper in acid red soil of different water content[J]. Surface Technology, 46, 240-245(2017).

    [17] Prabu B, Edward R, Justin D. Laser cladding of nickel-based alloy coatings on copper substrates[J]. Proceedings of SPIE, 9657, 965703(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2389034

    [18] Munitz A. Liquid separation effects in Fe-Cu alloys solidified under different cooling rates[J]. Metallurgical Transactions B, 18, 565-575(1987). http://www.tandfonline.com/servlet/linkout?suffix=CIT0006&dbid=16&doi=10.1080%2F00319104.2017.1327583&key=10.1007%2FBF02654269

    [19] He T Q, Wang L, Peng C X et al. Liquid phase separation of Fe-Cu alloy[J]. Journal of Materials Engineering, 44, 115-121(2016).

    [20] Straumal B B, Gust W, Molodov D A. Wetting transition on grain boundaries in Al contacting with a Sn-rich melt[J]. Interface Science, 3, 127-132(1995). http://link.springer.com/article/10.1007/BF00207014

    [21] van Vlack L H. Intergranular energy of iron and some iron alloys[J]. JOM, 3, 251-259(1951). http://link.springer.com/article/10.1007/BF03397307

    [22] Ji J. Study of Cu-Ni alloy powder in plasma overlay welding and mechanism of penetration crack[D]. Tianjin: Tianjin University(1999).

    [23] Wang C P, Liu X J, Ohnuma I et al. Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems[J]. Journal of Phase Equilibria & Diffusion, 25, 320-328(2004). http://link.springer.com/article/10.1007/s11669-004-0150-5

    Xiangxiang Huang, Kai Feng, Lijie He, Jian Gong, Jiang Chen, Zhuguo Li. Microstructure and Copper Contamination Phenomenon of Laser Cladded Aluminum Bronze Coatings on Carbon Steel Surface[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051401
    Download Citation