• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 051401 (2019)
Xiangxiang Huang1, Kai Feng1, Lijie He2, Jian Gong2, Jiang Chen3, and Zhuguo Li1、*
Author Affiliations
  • 1 Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2 No. 92730 Chinese People's Liberation Army, Sanya, Hainan 572000, China
  • 3 Shanghai Da Lu Laser Technology Co., Ltd., Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP56.051401 Cite this Article Set citation alerts
    Xiangxiang Huang, Kai Feng, Lijie He, Jian Gong, Jiang Chen, Zhuguo Li. Microstructure and Copper Contamination Phenomenon of Laser Cladded Aluminum Bronze Coatings on Carbon Steel Surface[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051401 Copy Citation Text show less
    Morphology of aluminum bronze coating. (a) Overall; (b) upper region; (c) middle region; (d) bottom region
    Fig. 1. Morphology of aluminum bronze coating. (a) Overall; (b) upper region; (c) middle region; (d) bottom region
    Microstructure and element distribution in upper region of aluminum bronze coating. (a) Microstructure; (b) Cu; (c) Al; (d) Fe
    Fig. 2. Microstructure and element distribution in upper region of aluminum bronze coating. (a) Microstructure; (b) Cu; (c) Al; (d) Fe
    Magnified Fe-rich morphology
    Fig. 3. Magnified Fe-rich morphology
    XRD pattern of aluminum bronze coating surface
    Fig. 4. XRD pattern of aluminum bronze coating surface
    SEM morphology of copper contamination and EDS analysis results of element distribution. (a) Copper contamination morphology; (b) #1 spot; (c) #2 spot; (d) #3 spot
    Fig. 5. SEM morphology of copper contamination and EDS analysis results of element distribution. (a) Copper contamination morphology; (b) #1 spot; (c) #2 spot; (d) #3 spot
    Schematic of wetting between α-phase grain boundary and molten β-phase
    Fig. 6. Schematic of wetting between α-phase grain boundary and molten β-phase
    Morphology of fusion zone and average depth of copper contamination under different laser parameters. (a) P=4 kW, s=4 mm·s-1, Q=12.5 g·min-1; (b) P=4 kW, s=3 mm·s-1, Q=12.5 g·min-1; (c) P=4 kW, s=2 mm·s-1, Q=12.5 g·min-1; (d) P=3.5 kW, s=2 mm·s-1, Q=12.5 g·min-1; (e) P=4.5 kW, s=2 mm·s-1, Q=12.5 g·min-1; (f) P=4 kW, s=2 mm·s-1, Q=15 g·min-1; (g) P=4 kW, s=2 mm·s-1, Q=10 g·min-1
    Fig. 7. Morphology of fusion zone and average depth of copper contamination under different laser parameters. (a) P=4 kW, s=4 mm·s-1, Q=12.5 g·min-1; (b) P=4 kW, s=3 mm·s-1, Q=12.5 g·min-1; (c) P=4 kW, s=2 mm·s-1, Q=12.5 g·min-1; (d) P=3.5 kW, s=2 mm·s-1, Q=12.5 g·min-1; (e) P=4.5 kW, s=2 mm·s-1, Q=12.5 g·min-1; (f) P=4 kW, s=2 mm·s-1, Q=15 g·min-1; (g) P=4 kW, s=2 mm·s-1, Q=10 g·min-1
    Width of fusion zone and average depth of copper contamination versus different process parameters. (a) Laser power; (b) scanning speed; (c) powder feeding rate
    Fig. 8. Width of fusion zone and average depth of copper contamination versus different process parameters. (a) Laser power; (b) scanning speed; (c) powder feeding rate
    Schematic of microstructure evolution and copper contamination under thermal cycle of laser cladding
    Fig. 9. Schematic of microstructure evolution and copper contamination under thermal cycle of laser cladding
    MaterialElement
    FeCMnSiSP
    Q235 base metalBal.0.14-0.220.30-0.65≤0.30≤0.0500.045
    Table 1. Chemical compositions of Q235 base metal (mass fraction, %)
    MaterialElement
    CuAlFeNiO
    Aluminium bronze powderBal.7.480.810.06<0.03
    Table 2. Chemical compositions of aluminum bronze powder (mass fraction, %)
    SpotElement
    CuAlFeMn
    #185.98.35.40.4
    #212.17.579.80.6
    Table 3. EDS analysis results of Cu-rich phase and Fe-rich phase (mass fraction,%)
    Xiangxiang Huang, Kai Feng, Lijie He, Jian Gong, Jiang Chen, Zhuguo Li. Microstructure and Copper Contamination Phenomenon of Laser Cladded Aluminum Bronze Coatings on Carbon Steel Surface[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051401
    Download Citation