• Microelectronics
  • Vol. 52, Issue 1, 6 (2022)
TU Zhenxing, WANG Xiaolei, DU Gaoming, and LI Zhenmin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.210095 Cite this Article
    TU Zhenxing, WANG Xiaolei, DU Gaoming, LI Zhenmin. FPGA Design and Implementation of a Large Integer Multiplier with High Speed Pipeline Structure[J]. Microelectronics, 2022, 52(1): 6 Copy Citation Text show less

    Abstract

    Large integer multiplication is the most time-consuming operation during encrypted data calculation. It is particularly important to improve large integer multiplier speed in machine learning based on fully homomorphic encryption. A design scheme of high speed 768 kbit large integer multiplier was proposed in this paper. The critical component 64k-point finite field number theory transform (NTT) was decomposed into 16-point NTT. And through dichotomy processing, the pipeline architecture of 16-point NTT was refined. To increase the speed of the multiplier, addition and shift were adopted to achieve the modular-subtraction unit, and data interaction was accomplished by using an efficient non-conflict address algorithm. The multiplier was deployed on the Altera Stratix-V FPGA development board. And the experimental results showed that the circuit had a working frequency of 169.23 MHz and took 0.317 ms to complete the large integer multiplication. Comparing with the state-of-the-art works, our speed performance was improved by 1.2 times to 7.3 times.
    TU Zhenxing, WANG Xiaolei, DU Gaoming, LI Zhenmin. FPGA Design and Implementation of a Large Integer Multiplier with High Speed Pipeline Structure[J]. Microelectronics, 2022, 52(1): 6
    Download Citation