• Journal of Semiconductors
  • Vol. 41, Issue 5, 051202 (2020)
Zhizai Li and Zhiwen Jin
Author Affiliations
  • School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials (MoE) & Key Laboratory of Special Function Materials and Structure Design (MoE) & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
  • show less
    DOI: 10.1088/1674-4926/41/5/051202 Cite this Article
    Zhizai Li, Zhiwen Jin. HI hydrolysis-derived intermediate as booster for CsPbI3 perovskite: from crystal structure, film fabrication to device performance[J]. Journal of Semiconductors, 2020, 41(5): 051202 Copy Citation Text show less
    References

    [1] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [2]

    [3] J Jiang, Q Wang, Z Jin et al. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv Energy Mater, 8, 1701757(2018).

    [4] J Jiang, Z Jin, F Gao et al. CsPbCl3-driven low-trap-density perovskite grain growth for > 20% solar cell efficiency. Adv Sci, 5, 1800474(2018).

    [5] C Wehrenfennig, G E Eperon, M B Johnston et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater, 26, 1584(2014).

    [6] W Hu, H Cong, W Huang et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light: Sci Appl, 8, 106(2019).

    [7] V D'Innocenzo, G Grancini, M J P Alcocer et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun, 5, 3586(2014).

    [8] Q Lin, A Armin, R C R Nagiri et al. Electro-optics of perovskite solar cells. Nat Photon, 9, 106(2014).

    [9] H H Fang, F Wang, S Adjokatse et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Sci Appl, 5, e16056(2016).

    [10] J H Noh, S H Im, J H Heo et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 13, 1764(2013).

    [11] H Bian, D Bai, Z Jin et al. Graded bandgap CsPbI2+xBr1–x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2, 1500(2018).

    [12] S D Stranks, G E Eperon, G Grancini et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341(2013).

    [13] H Wang, H Bian, Z Jin et al. Synergy of hydrophobic surface capping and lattice contraction for stable and high-efficiency inorganic CsPbI2Br perovskite solar cells. Solar RRL, 2, 1800216(2018).

    [14] C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 52, 9019(2013).

    [15] Y C Zhao, W K Zhou, X Zhou et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Sci Appl, 6, e16243(2017).

    [16] C Xiao, Z Li, H Guthrey et al. Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy. J Phys Chem C, 119, 26904(2015).

    [17] A F Akbulatov, S Y Luchkin, L A Frolova et al. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites. J Phys Chem Lett, 8, 1211(2017).

    [18] W Zhou, Y Zhao, X Zhou et al. Light-independent ionic transport in inorganic perovskite and ultrastable cs-based perovskite solar cells. J Phys Chem Lett, 8, 4122(2017).

    [19] Q Wang, X Zhang, Z Jin et al. Energy-down-shift CsPbCl3:Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett, 2, 1479(2017).

    [20] Z Jin, J Yan, X Huang et al. Solution-processed transparent coordination polymer electrode for photovoltaic solar cells. Nano Energy, 40, 376(2017).

    [21] J Jiang, Z Jin, J Lei et al. ITIC surface modification to achieve synergistic electron transport layer enhancement for planar-type perovskite solar cells with efficiency exceeding 20%. J Mater Chem A, 5, 9514(2017).

    [22] R E Beal, D J Slotcavage, T Leijtens et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 7, 746(2016).

    [23] X Jia, C Zuo, S Tao et al. CsPb(IxBr1−x)3 solar cells. Sci Bull, 64, 1532(2019).

    [24] X Zhang, Z Jin, J Zhang et al. All-ambient processed binary CsPbBr3-CsPb2Br5 perovskites with synergistic enhancement for high-efficiency Cs-Pb-Br-based solar cells. ACS Appl Mater Interfaces, 10, 7145(2018).

    [25] J Zhang, D Bai, Z Jin et al. 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv Energy Mater, 8, 1703246(2018).

    [26] D Bai, J Zhang, Z Jin et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett, 3, 970(2018).

    [27] Y Y Zhang, S Chen, P Xu et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. Chin Phys Lett, 35, 036104(2018).

    [28] C H Kang, I Dursun, G Liu et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Sci Appl, 8, 94(2019).

    [29] G Liu, C Zhou, F Wan et al. Dependence of power conversion properties of perovskite solar cells on operating temperature. Appl Phys Lett, 113, 3501(2018).

    [30] G Liu, B Yang, B Liu et al. Irreversible light-soaking effect of perovskite solar cells caused by light-induced oxygen vacancies in titanium oxide. Appl Phys Lett, 111, 3501(2017).

    [31] J F Wang, D X Lin, Y B Yuan. Recent progress of ion migration in organometal halide perovskite. Acta Phys Sin, 68, 158801(2019).

    [32] W Ahmad, J Khan, G Niu et al. Inorganic CsPbI3 perovskite-based solar cells: a choice for a tandem device. Solar RRL, 1, 1700048(2017).

    [33] P Wang, X Zhang, Y Zhou et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat Commun, 9, 2225(2018).

    [34] X Zhang, Q Wang, Z Jin et al. Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4:Yb,Er quantum dots. Nanoscale, 9, 6278(2017).

    [35] J A Steele, H D Jin, I Iurii et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science, 365, 679(2019).

    [36] J B Hoffman, A L Schleper, P V Kamat. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3–x through halide exchange. J Am Chem Soc, 138, 8603(2016).

    [37] Q Wang, Z Jin, D Chen et al. μ-graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv Energy Mater, 8, 1800007(2018).

    [38] H Zhao, J Xu, S Zhou et al. Preparation of tortuous 3D γ-CsPbI3 films at low temperature by CaI2 as dopant for highly efficient perovskite solar cells. Adv Funct Mater, 29, 1808986(2019).

    [39] A S Dayan, B E Cohen, S Aharon et al. Enhancing stability and photostability of CsPbI3 by reducing its dimensionality. Chem Mater, 30, 8017(2018).

    [40] T Ye, B Zhou, F Zhan et al. Below 200 °C fabrication strategy of black phase CsPbI3 film for ambient-air-stable solar cells. Solar RRL, 10(2019).

    [41] S Xiang, W Li, Y Wei et al. Natrium doping pushes the efficiency of carbon-based CsPbI3 perovskite solar cells to 10.7%. iScience, 15, 156(2019).

    [42] G E Eperon, G M Paternò, R J Sutton et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 3, 19688(2015).

    [43] K Wang, Z Jin, L Liang et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 9, 4544(2018).

    [44] Y Wang, T Zhang, M Kan et al. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J Am Chem Soc, 140, 12345(2018).

    [45] A Swarnkar, V K Ravi, A Nag. Beyond colloidal cesium lead halide perovskite nanocrystals: analogous metal halides and doping. ACS Energy Lett, 2, 1089(2017).

    [46] A Marronnier, G Roma, S Boyer-Richard et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 12, 3477(2018).

    [47] D Bai, H Bian, Z Jin et al. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy, 52, 408(2018).

    [48] M A Green, A Ho-Baillie, H J Snaith. The emergence of perovskite solar cells. Nat Photon, 8, 506(2014).

    [49] G E Eperon, S D Stranks, C Menelaou et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 7, 982(2014).

    [50] J Zhang, G Hodes, Z Jin et al. All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew Chem Int Ed, 58, 15596(2019).

    [51] Y Huang, W J Yin, Y He. Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3. J Phys Chem C, 122, 1345(2018).

    [52] R J Sutton, M R Filip, A A Haghighirad et al. Cubic or orthorhombic? revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 3, 1787(2018).

    [53] J K Sun, S Huang, X Z Liu et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. J Am Chem Soc, 140, 11705(2018).

    [54] V K Ravi, G B Markad, A Nag. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett, 1, 665(2016).

    [55] C C Stoumpos, M G Kanatzidis. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res, 48, 2791(2015).

    [56] C Katan, L Pedesseau, M Kepenekian et al. Interplay of spin–orbit coupling and lattice distortion in metal substituted 3D tri-chloride hybrid perovskites. J Mater Chem A, 3, 9232(2015).

    [57] L Zheng, D Zhang, Y Ma et al. Morphology control of the perovskite films for efficient solar cells. Dalton Trans, 44, 10582(2015).

    [58] C M M Soe, C C Stoumpos, B Harutyunyan et al. Room temperature phase transition in methylammonium lead iodide perovskite thin films induced by hydrohalic acid additives. ChemSusChem, 9, 2656(2016).

    [59] A Sharenko, C Mackeen, L Jewell et al. Evolution of iodoplumbate complexes in methylammonium lead iodide perovskite precursor solutions. Chem Mater, 29, 1315(2017).

    [60] D K Mohamad, B G Freestone, R Masters et al. Optimized organometal halide perovskite solar cell fabrication through control of nanoparticle crystal patterning. J Mater Chem C, 5, 2352(2017).

    [61] F Haque, M Wright, M A Mahmud et al. Effects of hydroiodic acid concentration on the properties of CsPbI3 perovskite solar cells. ACS Omega, 3, 11937(2018).

    [62] Y G Kim, T Y Kim, J H Oh et al. cesium lead iodide solar cells controlled by annealing temperature. Phys Chem Chem Phys, 19, 6257(2017).

    [63] D Y Heo, S M Han, N S Woo et al. Role of additives on the performance of CsPbI3 solar cells. J Phys Chem C, 122, 15903(2018).

    [64] Y Wei, W Li, S Xiang et al. Precursor effects on methylamine gas-induced CH3NH3PbI3 films for stable carbon-based perovskite solar cells. Solar Energy, 174, 139(2018).

    [65] F Wang, H Yu, H Xu et al. HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv Funct Mater, 25, 1120(2015).

    [66] S Pang, Y Zhou, Z Wang et al. Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3–CH3NH2 precursor pair. J Am Chem Soc, 138, 750(2016).

    [67] X Ding, H Chen, Y Wu et al. Triple cation additive NH3+C2H4NH2+C2H4NH3+-induced phase-stable inorganic α-CsPbI3 perovskite films for use in solar cells. J Mater Chem A, 6, 18258(2018).

    [68] S Xiang, Z Fu, W Li et al. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett, 3, 1824(2018).

    [69] Y Wang, T Zhang, F Xu et al. A Facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells. Solar RRL, 2, 1700180(2018).

    [70] Q Ye, Y Zhao, S Mu et al. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv Mater, 31, e1905143(2019).

    [71] W Ke, I Spanopoulos, C C Stoumpos et al. Myths and reality of HPbI3 in halide perovskite solar cells. Nat Commun, 9, 4785(2018).

    [72] Y Pei, Y Liu, F Li et al. Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: composition engineering, defect mitigation, and stability optimization. iScience, 15, 165(2019).

    [73] Y Wang, M I Dar, L K Ono et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science, 365, 591(2019).

    [74] Y Wang, X Liu, T Zhang et al. the role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant. Angew Chem Int Ed, 58, 16691(2019).

    [75] H Meng, Z Shao, L Wang et al. Chemical composition and phase evolution in DMAI-derived inorganic perovskite solar cells. ACS Energy Lett, 5, 263(2020).

    [76] H Bian, H Wang, Z Li et al. Unveiling the effects of hydrolysis-derived DMAI/DMAPbIx intermediate compound on performance of CsPbI3 solar cells. Adv Sci, 10, 1902868(2019).

    [77] A Dutta, N Pradhan. Phase-stable red-emitting CsPbI3 nanocrystals: successes and challenges. ACS Energy Lett, 4, 709(2019).

    [78] T Zhang, M I Dar, G Li et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Adv Sci, 3, e1700841(2017).

    [79] Y Wang, T Zhang, M Kan et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule, 2, 2065(2018).

    [80] T Wu, Y Wang, Z Dai et al. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv Mater, 31, e1900605(2019).

    [81] Y Fu, M T Rea, J Chen et al. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem Mater, 29, 8385(2017).

    [82] P Becker, J A Márquez, J Just et al. Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Adv Energy Mater, 9, 1900555(2019).

    [83] B Zhao, S Jin, S Huang et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J Am Chem Soc, 140, 11716(2018).

    [84] C Liu, Y Yang, X Xia et al. Soft Template-controlled growth of high-quality CsPbI3 films for efficient and stable solar cells. Adv Energy Mater, 10, 1903751(2020).

    [85] L Liang, L Zhizai, F Zhou et al. Humidity-insensitive fabrication of efficient CsPbI3 solar cells in ambient air. J Mater Chem A, 7, 26776(2019).

    [86] H Wang, H Bian, Z Jin et al. Cesium lead mixed-halide perovskites for low-energy loss solar cells with efficiency beyond 17%. Chem Mater, 31, 6231(2019).

    [87] K Wang, Z Jin, L Liang et al. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 58, 175(2019).

    [88] Z Yao, Z Jin, X Zhang et al. Pseudohalide (SCN-)-doped CsPbI3 for high performance solar cells. J Mater Chem C, 7, 13736(2019).

    [89] H Bian, Q Wang, S Yang et al. Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16%. J Mater Chem A, 7, 5740(2019).

    [90] L Liang, M Liu, Z Jin et al. Optical Management with nanoparticles for a light conversion efficiency enhancement in inorganic γ-CsPbI3 solar cells. Nano Lett, 19, 1796(2019).

    [91] H Bian, Q Wang, L Ding et al. Light management via tuning the fluorine-doped tin oxide glass haze-drives high-efficiency CsPbI3 solar cells. Phys Status Solidi A, 216, 1900602(2019).

    [92] Q Wang, X Zheng, Y Deng et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 1, 371(2017).

    [93] Z Jin, M Yuan, H Li et al. Graphdiyne: an efficient hole transporter for stable high-performance colloidal quantum dot solar cells. Adv Funct Mater, 26, 5284(2016).

    [94] Z Jin, A Wang, Q Zhou et al. Detecting trap states in planar PbS colloidal quantum dot solar cells. Sci Rep, 6, 37106(2016).

    [95] H Yao, F Zhou, Z Li et al. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells. Adv Sci, 10, 1903540(2020).

    [96] Z Jin, Q Zhou, Y Chen et al. Graphdiyne:ZnO nanocomposites for high-performance UV photodetectors. Adv Mater, 28, 3697(2016).

    [97] Y Jiang, J Yuan, Y Ni et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2, 1356(2018).

    [98] K Wang, Z Li, F Zhou et al. Ruddlesden–popper 2D component to stabilize γ-CsPbI3 Perovskite phase for stable and efficient photovoltaics. Adv Energy Mater, 9, 1902529(2019).

    [99] H Wang, S Xiang, W Li et al. Skillfully deflecting the question: a small amount of piperazine-1,4-diium iodide radically enhances the thermal stability of CsPbI3 perovskite. J Mater Chem C, 7, 11757(2019).

    [100] A Dutta, S K Dutta, S Das Adhikari et al. Phase-stable CsPbI3 nanocrystals: the reaction temperature matters. Angew Chem Int Ed, 57, 9083(2018).

    [101] J Xi, C Piao, J Byeon et al. Rational core-shell design of open air low temperature in situ processable CsPbI3 quasi-nanocrystals for stabilized p –i –n solar cells. Adv Energy Mater, 9, 1901787(2019).

    [102] B Li, Y Zhang, L Fu et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun, 9, 1076(2018).

    [103] J Gan, J He, R L Z Hoye et al. α-CsPbI3 colloidal quantum dots: synthesis, photodynamics, and photovoltaic applications. ACS Energy Lett, 4, 1308(2019).

    [104] X Zhang, R Munir, Z Xu et al. Phase transition control for high performance ruddlesden-popper perovskite solar cells. Adv Mater, 30, 1707166(2018).

    Zhizai Li, Zhiwen Jin. HI hydrolysis-derived intermediate as booster for CsPbI3 perovskite: from crystal structure, film fabrication to device performance[J]. Journal of Semiconductors, 2020, 41(5): 051202
    Download Citation