• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 22 (2022)
Xiao WANG*, Zhijie ZHU, Zhiyi WU, Chengcheng ZHANG, Zhijie CHEN, Mengqi XIAO, Chaoran LI, and Le HE
Author Affiliations
  • Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215000, China
  • show less
    DOI: 10.15541/jim20210458 Cite this Article
    Xiao WANG, Zhijie ZHU, Zhiyi WU, Chengcheng ZHANG, Zhijie CHEN, Mengqi XIAO, Chaoran LI, Le HE. Preparation and Photothermal Catalytic Application of Powder-form Cobalt Plasmonic Superstructures[J]. Journal of Inorganic Materials, 2022, 37(1): 22 Copy Citation Text show less
    References

    [1] W WANG, S WANG, X MA et al. Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40, 3703-3727(2011). http://xlink.rsc.org/?DOI=c1cs15008a

    [2] W GAO, S LIANG, R WANG et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 49, 8584-8686(2020). http://xlink.rsc.org/?DOI=D0CS00025F

    [3] G CHEN, GIN WATERHOUSE, R SHI et al. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angewandte Chemie International Edition, 58, 17528-17551(2019). https://onlinelibrary.wiley.com/toc/15213773/58/49

    [4] B HAN, X OU, Z DENG et al. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: metal-node- dependent activity and selectivity. Angewandte Chemie International Edition, 57, 16811-16815(2018). https://onlinelibrary.wiley.com/toc/15213773/57/51

    [5] S WANG, A TOUNTAS A, W PAN et al. CO2 footprint of thermal versus photothermal CO2 catalysis. Small, 2007025(2021).

    [6] C RA E, Y KIM K, H KIM E et al. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catalysis, 10, 11318-11345(2020). https://pubs.acs.org/doi/10.1021/acscatal.0c02930

    [7] T KONG, Y JIANG, Y XIONG. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation?. Chemical Society Reviews, 49, 6579-6591(2020). http://xlink.rsc.org/?DOI=C9CS00920E

    [8] X MENG, T WANG, L LIU et al. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angewandte Chemie International Edition, 53, 11478-11482(2014). https://onlinelibrary.wiley.com/doi/10.1002/anie.201404953

    [9] S NING, H XU, Y QI et al. Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co-N species anchored Co@C hybrid. ACS Catalysis, 10, 4726-4736(2020). https://pubs.acs.org/doi/10.1021/acscatal.9b04963

    [10] F YU, H WANG C, Y LI Y et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Advanced Science, 7(2020).

    [11] Z LI, J LIU, R SHI et al. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons. Advanced Energy Materials, 11(2021).

    [12] S WANG Y, F ZHAO Y, J LIU J et al. Manganese oxide modified nickel catalysts for photothermal CO hydrogenation to light olefins. Advanced Energy Materials, 10, 1902860(2020). https://onlinelibrary.wiley.com/toc/16146840/10/5

    [13] Q ZHOU S, L SHANG, X ZHAO Y et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Advanced Materials, 31, 1900509(2019). https://onlinelibrary.wiley.com/toc/15214095/31/18

    [14] G CHEN, R GAO, Y ZHAO et al. Alumina-supported cofe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Advanced Materials, 30, 1704663(2018). https://onlinelibrary.wiley.com/toc/15214095/30/3

    [15] S WU, Y LI, Q ZHANG et al. High light-to-fuel efficiency and CO2 reduction rates achieved on a unique nanocomposite of Co/Co doped Al2O3 nanosheets with UV-Vis-IR irradiation. Energy & Environmental Science, 12, 2581-2590(2019).

    [16] M GHOUSSOUB, M XIA, N DUCHESNE P et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy & Environmental Science, 12, 1122-1142(2019).

    [17] J WANG Z, H SONG, H LIU et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angewandte Chemie International Edition, 59, 8016-8035(2020). https://onlinelibrary.wiley.com/toc/15213773/59/21

    [18] D MATEO, L CERRILLO J, S DURINI et al. Fundamentals and applications of photo-thermal catalysis. Chemical Society Reviews, 50, 2173-2210(2021). http://xlink.rsc.org/?DOI=D0CS00357C

    [19] F ZHANG, H LI Y, Y QI M et al. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catalysis, 1, 272-297(2021). https://linkinghub.elsevier.com/retrieve/pii/S2667109321000038

    [20] H LIU, L SHI, Q ZHANG et al. Photothermal catalysts for hydrogenation reactions. Chemical Communications, 57, 1279-1294(2021). http://xlink.rsc.org/?DOI=D0CC07144G

    [21] S LUO, X REN, H LIN et al. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chemical Science, 12, 5701-5719(2021). http://xlink.rsc.org/?DOI=D1SC00064K

    [22] J JIA, H WANG, Z LU et al. Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Advanced Science, 4, 1700252(2017). https://onlinelibrary.wiley.com/toc/21983844/4/10

    [23] N KONG, B HAN, Z LI et al. Ruthenium nanoparticles supported on Mg(OH)2 microflowers as catalysts for photothermal carbon dioxide hydrogenation. ACS Applied Nano Materials, 3, 3028-3033(2020). https://pubs.acs.org/doi/10.1021/acsanm.0c00383

    [24] C DONG, C LIAN, S HU et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications, 9, 1252(2018). https://doi.org/10.1038/s41467-018-03666-2

    [25] Z WU, C LI, Z LI et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano, 15, 5696-5705(2021). https://pubs.acs.org/doi/10.1021/acsnano.1c00990

    [26] J SHEN, Z WU, C LI et al. Emerging applications of MXene materials in CO2 photocatalysis. FlatChem, 28, 100252(2021). https://linkinghub.elsevier.com/retrieve/pii/S2452262721000313

    [27] B DENG, H SONG, K PENG et al. Metal-organic framework- derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Applied Catalysis B: Environmental, 298, 120519(2021). https://linkinghub.elsevier.com/retrieve/pii/S0926337321006457

    [28] T NGUYEN N, T YAN, L WANG et al. Plasmonic titanium nitride facilitates indium oxide CO2 photocatalysis. Small, 16, 2005754(2020). https://onlinelibrary.wiley.com/toc/16136829/16/49

    [29] F XU Y, N DUCHESNE P, L WANG et al. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nature Communications, 11, 5149(2020). https://doi.org/10.1038/s41467-020-18943-2

    [30] B XIE, J WONG R, H TAN T et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nature Communications, 11, 1615(2020). https://doi.org/10.1038/s41467-020-15445-z

    [31] G O’BRIEN P, A SANDHEL, E WOOD T et al. Photomethanation of gaseous CO2 over Ru/Silicon nanowire catalysts with visible and near-infrared photons. Advanced Science, 1, 1400001(2014). https://onlinelibrary.wiley.com/doi/10.1002/advs.201400001

    [32] Y FANG, K LV, Z LI et al. Solution-liquid-solid growth and catalytic applications of silica nanorod arrays. Advanced Science, 7, 2000310(2020). https://onlinelibrary.wiley.com/toc/21983844/7/13

    [33] B HOCH L, P G O'BRIEN, A JELLE et al. Nanostructured indium oxide coated silicon nanowire arrays: A hybrid photothermal/ photochemical approach to solar fuels. ACS Nano, 10, 9017-9025(2016). https://pubs.acs.org/doi/10.1021/acsnano.6b05416

    [34] D LOU, B XU A, Y FANG et al. Cobalt-sputtered anodic aluminum oxide membrane for efficient photothermal CO2 hydrogenation. ChemNanoMat(2021).

    [35] D ZHANG, K LV, C LI et al. All-earth-abundant photothermal silicon platform for CO2 catalysis with nearly 100% sunlight harvesting ability. Solar RRL, 5, 2000387(2020). https://onlinelibrary.wiley.com/toc/2367198x/5/2

    [36] A JELLE A, K GHUMAN K, P G O'BRIEN et al. Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support. Advanced Energy Materials, 8, 1702277(2018). http://doi.wiley.com/10.1002/aenm.v8.9

    [37] G O’BRIEN P, K GHUMAN K, A JELLE A et al. Enhanced photothermal reduction of gaseous CO2 over silicon photonic crystal supported ruthenium at ambient temperature. Energy & Environmental Science, 11, 3443-3451(2018).

    [38] K FENG, S WANG, D ZHANG et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis. Advanced Materials, 32, 2000014(2020). https://onlinelibrary.wiley.com/toc/15214095/32/24

    [39] M WANG, J LIU, C GUO et al. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect. Journal of Materials Chemistry A, 6, 4768-4775(2018). http://xlink.rsc.org/?DOI=C8TA00154E

    [40] L WANG, E GUAN, Y WANG et al. Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nature Communications, 11, 1033(2020). https://doi.org/10.1038/s41467-020-14817-9

    Xiao WANG, Zhijie ZHU, Zhiyi WU, Chengcheng ZHANG, Zhijie CHEN, Mengqi XIAO, Chaoran LI, Le HE. Preparation and Photothermal Catalytic Application of Powder-form Cobalt Plasmonic Superstructures[J]. Journal of Inorganic Materials, 2022, 37(1): 22
    Download Citation