• Opto-Electronic Advances
  • Vol. 4, Issue 4, 210006-1 (2021)
Xiuji Lin, Qichen Feng, Yao Zhu, Shuaihao Ji, Bo Xiao, Huiying Xu, Wensong Li*, and Zhiping Cai
Author Affiliations
  • Department of Electronic Engineering, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China.
  • show less
    DOI: 10.29026/oea.2021.210006 Cite this Article
    Xiuji Lin, Qichen Feng, Yao Zhu, Shuaihao Ji, Bo Xiao, Huiying Xu, Wensong Li, Zhiping Cai. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm[J]. Opto-Electronic Advances, 2021, 4(4): 210006-1 Copy Citation Text show less
    References

    [1] I Immonen, E Viherkoski, GA Peyman. Experimental retinal and ciliary body photocoagulation using a new 670-nm diode laser. Am J Ophthalmol, 122, 870-874(1996).

    [2] A Müller, S Marschall, OB Jensen, J Fricke, H Wenzel, et al. Diode laser based light sources for biomedical applications. Laser Photon Rev, 7, 605-627(2013).

    [3] WJ Genovese, Santos dos, F Faloppa, Souza de. The use of surgical diode laser in oral hemangioma: a case report. Photomed Laser Surg, 28, 147-151(2010).

    [4] SP Nisticò, M Tolone, T Zingoni, F Tamburi, E Scali, et al. A new 675 nm laser device in the treatment of melasma: results of a prospective observational study. Photobiomodul Photomed Laser Surg, 38, 560-564(2020).

    [5] G Cannarozzo, M Silvestri, F Tamburi, C Sicilia, Duca Del, et al. A new 675-nm laser device in the treatment of acne scars: an observational study. Lasers Med Sci, 36, 227-231(2021).

    [6] RL Yeager, JA Franzosa, DS Millsap, JL Angell-Yeager, SS Heise, et al. Effects of 670-nm phototherapy on development. Photomed Laser Surg, 23, 268-272(2005).

    [7] AP Sommer, J Bieschke, RP Friedrich, D Zhu, EE Wanker, et al. 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: basis for treatment of Alzheimer's disease?. Photomed Laser Surg, 30, 54-60(2012).

    [8] YJ Noudeh, M Shabani, N Vatankhah, SJ Hashemian, K Akbari. A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg, 28, 621-627(2010).

    [9] GDM Jeffries, JS Edgar, YQ Zhao, JP Shelby, C Fong, et al. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett, 7, 415-420(2007).

    [10] A Ashkin, JM Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517-1520(1987).

    [11] H Maruyama, K Kotani, T Masuda, A Honda, T Takahata, et al. Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid Nanofluid, 10, 1109-1117(2011).

    [12] AN Bashkatov, EA Genina, VV Tuchin. Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci, 4, 9-38(2011).

    [13] AY Yao, W Hou, Y Bi, AC Geng, XC Lin, et al. High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YVO4 laser. Appl Opt, 44, 7156-7160(2005).

    [14] RP Schneider, KD Choquette, JA Lott, KL Lear, JJ Figiel, et al. Efficient room-temperature continuous-wave AlGaInP/AlGaAs visible (670 nm) vertical-cavity surface-emitting laser diodes. IEEE Photonics Technol Lett, 6, 313-316(1994).

    [15] PW Metz, F Reichert, F Moglia, S Müller, DT Marzahl, et al. High-power red, orange, and green Pr3+:LiYF4 lasers. Opt Lett, 39, 3193-3196(2014).

    [16] SY Luo, XG Yan, Q Cui, B Xu, HY Xu, et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt Commun, 380, 357-360(2016).

    [17] H Tanaka, S Fujita, F Kannari. High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Appl Opt, 57, 5923-5928(2018).

    [18] XJ Lin, Y Zhu, SH Ji, WS Li, HY Xu, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+:YLF lasers. Opt Laser Technol, 129, 106281(2020).

    [19] C Kränkel, DT Marzahl, F Moglia, G Huber, PW Metz. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev, 10, 548-568(2016).

    [20] HJ Chen, H Uehara, H Kawase, R Yasuhara. Efficient Pr:YAlO3 lasers at 622 nm, 662 nm, and 747 nm pumped by semiconductor laser at 488 nm. Opt Express, 28, 3017-3024(2020).

    [21] B Qu, B Xu, SY Luo, YJ Cheng, HY Xu, et al. InGaN-LD-Pumped continuous-wave deep red laser at 670 nm in Pr3+:LiYF4 crystal. IEEE Photonics Technol Lett, 27, 333-335(2015).

    [22] B Qu, Q Huang. Watt-level diode-pumped continuous-wave Pr:LiYF4 laser at 670 nm and simultaneous dual-wavelength operation at 639 and 670 nm. Appl Opt, 59, 3033-3037(2020).

    [23] PJ Hardman, WA Clarkson, GJ Friel, M Pollnau, DC Hanna. Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals. IEEE J Quantum Electron, 35, 647-655(1999).

    [24] P Laporta, M Brussard. Design criteria for mode size optimization in diode-pumped solid-state lasers. IEEE J Quantum Electron, 27, 2319-2326(1991).

    [25] DM Rust. Étalon filters. Opt Eng, 33, 3342-3348(1994).

    [26] MW Beijersbergen, L Allen, der van, JP Woerdman. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun, 96, 123-132(1993).

    [27] DJ Kim, JW Kim. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt Lett, 40, 399-402(2015).

    [28] SW Cui, B Xu, SY Luo, HY Xu, ZP Cai, et al. Determining topological charge based on an improved Fizeau interferometer. Opt Express, 27, 12774-12779(2019).

    [29] XJ Lin, SW Cui, SH Ji, QY Tian, Y Zhu, et al. LD-pumped high-power high-efficiency orange vortex Pr3+:YLF lasers. Opt Laser Technol, 133, 106571(2021).

    Xiuji Lin, Qichen Feng, Yao Zhu, Shuaihao Ji, Bo Xiao, Huiying Xu, Wensong Li, Zhiping Cai. Diode-pumped wavelength-switchable visible Pr3+:YLF laser and vortex laser around 670 nm[J]. Opto-Electronic Advances, 2021, 4(4): 210006-1
    Download Citation