• Acta Optica Sinica
  • Vol. 35, Issue 12, 1227001 (2015)
Sun Ying1、*, Zhao Shanghong1, and Dong Chen1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201535.1227001 Cite this Article Set citation alerts
    Sun Ying, Zhao Shanghong, Dong Chen. Passive Measurement Device Independent Quantum Key Distribution Based on Parametric down Conversion Source[J]. Acta Optica Sinica, 2015, 35(12): 1227001 Copy Citation Text show less
    References

    [1] C H Bennett, G Brassard. Quantum cryptography: public key distribution and coin tossing[C]. Processing of IEEE International Conference on Computers, Systems, and Signal Processing, 1984: 175-179.

    [2] Dong Chen, Zhao Shanghong, Dong Yi, et al.. Measurement of device-independent quantum key distribution for the rotation invariant photonic state[J]. Acta Physica Sinica, 2014 , 63(17): 170303.

    [3] Zhu Feng, Wang Qin. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.

    [4] R D Somma, R J Hughes. Security of decoy-state protocols for general photon-number-splitting attacks[J]. Phys Rev A, 2013, 87(6): 062330.

    [5] W Liu, S Sun, L Liang, et al.. Proof-of-principle experiment of a modified photon-number-splitting attack against quantum key distribution [J]. Phys Rev A, 2011, 83(4): 042326.

    [6] Y Zhao, C H F Fung, B Qi, et al.. Quantum hacking: experimental demonstration of time shift attack against practical quantum key distribution systems[J]. Phys Rev A, 2008, 78(4): 042333.

    [7] C H F Fung, B Qi, K Tamaki, et al.. Phase-remapping attack in practical quantum key distribution systems[J]. Phys Rev A, 2007, 75(3): 032314.

    [8] W Y Hwang. Quantum key distribution with high loss: toward global secure communication[J]. Phys Rev Lett, 2003, 91(5): 057901.

    [9] H K Lo, M Curty, B Qi. Measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2012, 108(13): 130503.

    [10] P Chan, J A Slater, I Lucio Martinez, et al.. Modeling a measurement device independent quantum key distribution system[J]. Optics Express, 2014, 22(11): 12716-12736.

    [11] X F Ma, M Razavi. Alternative schemes for measurement-device-independent quantum key distribution[J]. Phys Rev A, 2012, 86(6): 062319.

    [12] H Chi, Z Yu, X Wang. Decoy-state method of quantum key distribution with both source errors and statistics fluctuations[J]. Phys Rev A, 2012, 86(4): 042307.

    [13] Mi Jinglong, Wang Faqiang, Lin Qingqun, et al.. Decoy state quantum key distribution with dual detector sheralded single photon source [J]. Acta Physica Sinica, 2008, 57(2): 678-684.

    [14] Y Zhang, W Chen, S Wang, et al.. Practical non-Poissonian light source for passive decoy state quantum key distribution[J]. Opt Lett, 2010, 35(20): 3393-3395.

    [15] W Mauerer, C Silberhorn. Quantum key distribution with passive decoy state selection[J]. Phys Rev A, 2007, 75(5): 050305.

    [16] C Zhou, W Bao, W Chen, et al.. Phase-encoded measurement device independent quantum key distribution with practical spontaneous parametric down conversion sources[J]. Phys Rev A, 2013, 88(5): 052333.

    [17] Y Adachi, T Yamamoto, M Koashi, et al.. Simple and efficient quantum key distribution with parametric down-conversion[J]. Phys Rev Lett, 2007, 99(18): 180503.

    [18] Y Liu, T Chen, L Wang, et al.. Experimental measurement device independent quantum key distribution[J]. Phys Rev Lett, 2013, 111 (13): 130502.

    [19] X Ma, S Sun, M Jiang, et al.. Gaussian-modulated coherent-state measurement device independent quantum key distribution[J]. Phys Rev A, 2014, 89(4): 042335.

    [20] F Xu, B Qi, Z Liao, et al.. Long distance measurement device independent quantum key distribution with entangled photon sources[J]. Appl Phys Lett, 2013, 103(6): 061101.

    [21] Y Shan, S Sun, X Ma, et al.. Measurement-device-independent quantum key distribution with a passive decoy-state method [J]. Phys Rev A, 2014, 90(4): 042334.

    [22] Q Wang, X Wang, G Bj rk, et al.. Improved practical decoy state method in quantum key distribution with parametric down conversion source[J]. Europhys Lett, 2007, 79(4): 40001.

    [23] Quan Dongxiao, Pei Changxing, Zhu Changhua, et al.. New method of decoy state quantum key distribution with a heralded single-photon source[J]. Acta Physica Sinica, 2008, 57(9): 5600-5604.

    [24] S Mori, J S derholm, N Namekata, et al.. On the distribution of 1550 nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide[J]. Opt Commun, 2006, 264(1): 156-162.

    [25] D Gottesman , H K Lo, N Lütkenhaus, et al.. Security of quantum key distribution with imperfect devices[J]. Quantum Information & Computation, 2004, 4(5): 325-360.

    [26] S Abruzzo, H Kampermann, D Bruss. Measurement device independent quantum key distribution with quantum memories[J]. Phys Rev A, 2014, 89(1): 012301.

    [27] Jiao Rongzhen, Feng Chenxu, Tang Shaojie. Communication rate and error rate in the quantum-key-distribution system[J]. Acta Optica Sinica, 2008, 28 (S2): 167-169.

    [28] G Smith, J M Renes, J A Smolin. Structured codes improve the Bennett Brassard 84 quantum key rate[J]. Phys Rev Lett, 2008, 100(17): 170502.

    CLP Journals

    [1] Zhu Zhuodan, Zhang Xi, Zhao Shanghong, Su Lihua, Wang Xingyu. Measurement-Device-Independent Quantum Key Distribution Protocols for Heralded Pair Coherent State[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122703

    Sun Ying, Zhao Shanghong, Dong Chen. Passive Measurement Device Independent Quantum Key Distribution Based on Parametric down Conversion Source[J]. Acta Optica Sinica, 2015, 35(12): 1227001
    Download Citation