• Opto-Electronic Advances
  • Vol. 3, Issue 10, 200011-1 (2020)
Kiyosh Asakawa1、*, Yoshimasa Sugimoto2, and Shigeru Nakamura3
Author Affiliations
  • 1Associate Program, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
  • 2Nanotechnology Innovation Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
  • 3Biometrics Research Laboratories, NEC Corporation, 1131, Hinode, Abiko, Chiba 270-1198, Japan
  • show less
    DOI: 10.29026/oea.2020.200011 Cite this Article
    Kiyosh Asakawa, Yoshimasa Sugimoto, Shigeru Nakamura. Silicon photonics for telecom and data-com applications[J]. Opto-Electronic Advances, 2020, 3(10): 200011-1 Copy Citation Text show less
    References

    [1] Asahi Newspaper article (in Japanese), Jan 9, 2017.

    [2] https://www.ntt.co.jp/mirai/e/history/.

    [3] R Soref, B Bennett. Electrooptical effects in silicon. IEEE J Quant Electron, 23, 123-129(1987).

    [4] G Gunn. CMOS Photonics for high-speed interconnects. IEEE Micro, 26, 58-66(2006).

    [5] B Jalali, S Fathpour. Silicon photonics. J Light Wave Technol, 24, 4600-4615(2006).

    [6] Z Fang, C Z Zhao. Recent progress in silicon photonics: a review. ISRN Opt, 2012, 428690(2012).

    [7] A Dhiman. Silicon photonics: a review. IOSR J Appl Phys (IOSR-JAP), 3, 67-79(2013).

    [8] A Kumar. Silicon photonics: An evolving technology. Int J Eng Sci Res Technol, 5, 153-161(2016).

    [9] D Thomson, A Zilkie, J E Bowers, T Komljenovic, G T Reed et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

    [10] J E Bowers, T Komljenovic, M Davenport, J Hulme, A Y Liu et al. Recent advances in silicon photonic integrated circuits. Proc SPIE, 9774, 977402(2017).

    [11] V Stojanović, R J Ram, M Popović, S Lin, S Moazeni et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes[Invited]. Opt Express, 26, 13106-13121(2018).

    [12] Y Hibino. Silica-based planar lightwave circuits and their applications. MRS Bull, 28, 365-371(2003).

    [13] G L Bona, R Germann, B J Offrein. SiON high-refractive-index waveguide and planar lightwave circuits. IBM J Res Develop, 47, 239-249(2003).

    [14] Y A Vlasov, S J McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt Express, 12, 1622-1631(2004).

    [15] A W Fang, H Park, R Jones, O Cohen, M J Paniccia et al. A continuous-wave hybrid AlGaInAs-silicon evanescent laser. IEEE Photon Technol Lett, 18, 1143-1145(2006).

    [16] D Pasquariello, K Hjort. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J Sel Top Quant Electron, 8, 118-131(2002).

    [17] A Lee, Q Jiang, M C Tang, A Seeds, H Y Liu. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 20, 22181-22187(2012).

    [18] A Y Liu, C Zhang, J Norman, A Snyder, D Lubyshev et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104(2014).

    [19] H Park, A W Fang, S Kodama, J E Bowers. Hybrid silicon evanescent laser fabricated with a silicon waveguide and Ⅲ-V off set quantum wells. Opt Express, 13, 9460-9464(2005).

    [20] G Roelkens, D Van Thourhout, R Baets, R Nötzel, M Smit. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 14, 8154-8159(2006).

    [21] A W Fang, H Park, O Cohen, R Jones, M J Paniccia et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt Express, 14, 9203-9210(2006).

    [22] D Liang, J E Bowers. Recent progress in lasers on silicon. Nat Photon, 4, 511-517(2010).

    [23] M W Maeda, C Chang-Hasnain, A Von Lehmen, H Izadpanah, C Lin et al. Multigigabit/s operations of 16-wavelength vertical-cavity surface-emitting laser array. IEEE Photon Technol Lett, 3, 863-865(1991).

    [24] C J Chang-Hasnain. Tunable VCSEL. IEEE J Sel Top Quantum Electron, 6, 978-987(2000).

    [25] E Kapon, A Sirbu. Long-wavelength VCSELs: Power-efficient answer. Nat Photon, 3, 27-29(2009).

    [26] L Zhu, V Karagodsky, C J Chang-Hasnain. Novel high efficiency vertical to in-plane optical coupler. Proc SPIE, 8270, 82700L(2012).

    [27] J Ferrara, W J Yang, L Zhu, P F Qiao, C J Chang-Hasnain. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt Express, 23, 2512-2523(2015).

    [28] T Akatsu, C Deguet, L Sanchez, F Allibert, D Rouchon et al. Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices. Mater Sci Semicond Proc, 9, 444-448(2006).

    [29] H Tanoto, S F Yoon, K L Lew, W K Loke, C Dohrman et al. Electroluminescence and structural characteristics of InAs/In0.9As quantum dots grown on graded Si1-xGex/Si substrate. Appl Phys Lett, 95, 141905(2009).

    [30] H Y Liu, T Wang, Q Jiang, R Hogg, F Tutu et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 5, 416-419(2011).

    [31] A Lee, Q Jiang, M C Tang, A Seeds, H Y Liu. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 20, 22181-22187(2012).

    [32] Seimetz M. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. In Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OTuM2 (OSA, 2008).

    [33] T Komljenovic, S Srinivasan, E Norberg, M Davenport, G Fish et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Top Quant Electron, 21, 1501909(2015).

    [34] M J R Heck, J F Bauters, , J K Doylend, S Jain et al. Hybird silicon photonic integrated circuit technology. IEEE J Sel Top Quant Electron, 19, 6100117(2013).

    [35] F N Xia, L Sekaric, Y Vlasov. Ultracompact optical buffers on a silicon chip. Nat Photon, 1, 65-71(2007).

    [36] S Srinivasan, M Davenport, T Komljenovic, J Hulme, D T Spencer et al. Coupled-ring-resonator-mirror-based heterogeneous Ⅲ-V silicon tunable laser. IEEE Photon J, 7, 2700908(2015).

    [37] E J Stanton, M J R Heck, J Bovington, A Spott, J E Bowers. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. Opt Express, 23, 11272-11283(2015).

    [38] H Yaegashi. Development of ultra-compact optical transceivers for IoT network utilizing silicon photonics technology. OKI Tech Rev, 84, 1-4(2017).

    [39] B E Little, S T Chu, W Pan, Y Kokubun. Microring resonator arrays for VLSI photonics. IEEE Photon Technol Lett, 12, 323-325(2000).

    [40] Q F Xu, D Fattal, R G Beausoleil. Silicon microring resonators with 1. Opt Express, 6, 4309-4315(2008).

    [41] https://s3.i-micronews.com/uploads/2020/04/YDR20088-Silicon-Photonics-Market-Technology-2020-Sample.pdf

    [42] https://www.eetimes.com/globalfoundries-cuts-5-of-workforce/#. Original source by IC Insights

    [43] http://download.intel.com/pressroom/pdf/photonics/50G_Silicon_Photonics_Link.pdf.

    [44] R A Soref, J P Lorenzo. Single-crystal silicon: a new material for 1.3 and 1.6 njm integrated-optical components. Electron Lett, 21, 953-954(1985).

    [45] G T Reed, W R Headley, C E J Png. Silicon photonics: the early years. Proc SPIE, 5730, 596921(2005).

    [46] A Rickman. The commercialization of silicon photonics. Nat Photon, 8, 579-582(2014).

    [47] J F Liu, D D Cannon, K Wada, Y Ishikawa, S Jongthammanurak et al. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl Phys Lett, 87, 011110(2005).

    [48] 2014 Optical Fiber Communications Conference (OFC) TH4C.1 (OSA, 2014); https://doi.org/10.1364/OFC.2014.Th4C.1.

    [49] 2015 Optical Fiber Communications Conference (OFC) W3A.1 (OSA, 2015); https://doi.org/10.1364/OFC.2015.W3A.1.

    [50] 2014 Optical Fiber Communications Conference (OFC) Th5C.1 (OSA, 2014); https://doi.org/10.1364/OFC.2014.Th5C.1.

    [51] Silicon photonics shipments, for datacenter (In units) 2019-2025e. Yole Développement (2020).

    [52] Patterson D, De Sousa I, Achard L M. The future of packaging with silicon photonics. Chip Scale Rev, 1-10 (Jan, 2017).

    [53] https://arstechnica.com/information-technology/2015/05/ibm-demos-first-fully-integrated-monolithic-silicon-photonics-chip/.

    [54] S. Narasimha, K. Onishi, H. M. Nayfeh, A. Waite, M. Weybright et al. High performance 45-nm SOI technology with enhanced strain, porous Low-k BEOL, and immersion lithography. In Proceedings of International Electron Devices Meeting, (IEEE, 2006), 1-4.

    [55] J S Orcutt, B Moss, C Sun, J Leu, M Georgas et al. Open foundry platform for high-performance electronic-photonic integration. Opt Express, 20, 12222-12232(2012).

    [56] C Sun, M Wade, M Georgas, S Lin, L Alloatti et al. A 45 nm CMOS-SOI Monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J Solid-State Circuits, 51, 893-907(2016).

    [57] ESSCIRC 2014-40th European Solid State Circuits Conference (ESSCIRC) 199-202 (IEEE, 2014); http://doi.org/10.1109/ESSCIRC.2014.6942056.

    [58] 2017 IEEE 25th Symposium on High-Performance Interconnects (HOTI) 25-28 (IEEE, 2017); http://doi.org/10.1109/HOTI.2017.23.

    [59] S Moazeni, S Lin, M T Wade, L Alloatti, R J Ram et al. A 40Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45nm SOI CMOS. IEEE J Solid-State Circuits, 52, 3503-3516(2017).

    [60] T Nakamura, K Yashiki, K Mizutani, T Nedachi, J Fujikata et al. Fingertip-size optical module, pOptical I/O Coreq, and its application in FPGA. IEICE Trans Electron, E102-C, 333-339(2019).

    [61] http://www.aiocore.com/technology

    [62] T Mogami, T Horikawa, K Kinoshita, Y Hagihara, J Ushida et al. 1.2 Tbps/cm2 enabling silicon photonics IC technology based on 40-nm generation platform. J Lightw Technol, 36, 4701-4712(2018).

    [63] 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) (IEEE, 2015); http://doi.org/10.1109/ECTC.2015.7159766.

    [64] Yashiki K, Mizutani K, Ushida J, Suzuki Y, Kurihara M et al. 25-Gbps error-free operation of chip-scale Si-photonics optical transmitter over 70℃ with integrated quantum dot laser. In Optical Fiber Communications Conference and Exhibition (OFC) Th1F.7 (OSA, 2016).

    [65] https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1468_07-14_English.pdf.

    [66] Q X Cheng, M Bahadori, M Glick, S Rumley, K Bergman. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [67] H S Hinton. An Introduction to Photonic Switching Fabrics(2013).

    [68] 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS) (IEEE, 2016). https://ieeexplore.ieee.org/document/7718222.

    [69] Y Sakamaki, T Kawai, M Fukutoku. Next-generation optical switch technologies for realizing ROADM with more flexible functions. NTT Tech Rev, 12, 1-5(2014).

    [70] E B Basch, R Egorov, S Gringeri, S Elby. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE J Sel Top Quant Electron, 12, 615-626(2006).

    [71] S Gringeri, B Basch, V Shukla, R Egorov, T J Xia. Flexible architectures for optical transport nodes and networks. IEEE Commun Mag, 48, 40-50(2010).

    [72] https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf.

    [73] H Takeshita, T Hino, K Ishii, J Kurumida. Prototype highly integrated 8×48 transponder aggregator based on Si photonics for multi-degree colorless, directionless, contentionless reconfigurable optical add/drop multiplexer. IEICE Trans Electron, E96-C, 966-973(2013).

    [74] E Yamazaki, S Yamanaka, Y Kisaka, T Nakagawa, K Murata et al. Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP. Opt Express, 19, 13179-13184(2011).

    [75] S Nakamura, S Yanagimachi, H Takeshita, A Tajima, T Hino et al. Optical switches based on silicon photonics for ROADM application. IEEE J Sel Top Quant Electron, 22, 3600609(2016).

    [76] Optical Fiber Communication Conference OTu2I.3 (OSA, 2012); https://doi.org/10.1364/OFC.2012.OTu2I.3.

    [77] Optical Fiber Communication Conference M2B.6 (OSA, 2015); https://doi.org/10.1364/OFC.2015.M2B.6.

    [78] Asia Communications and Photonics Conference AF4B.3 (OSA, 2014); https://doi.org/10.1364/ACPC.2014.AF4B.3.

    [79] G Cocorullo, Corte F G Della, I Rendina. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and. Appl Phys Lett, 74, 3338-3340(1999).

    [80] 2014 the European Conference on Optical Fiber Communications (ECOC 2014) PD.1.3 (IEEE, 2014); http://doi.org/10.1109/ECOC.2014.6964268.

    [81] Optical Fiber Communication Conference OTuM2 (OSA, 2011). https://doi.org/10.1364/OFC.2011.OTuM2.

    [82] L Chen, Y K Chen. Compact, low-loss and low-power 8×8 broadband silicon optical switch. Opt Express, 20, 18977-18985(2012).

    [83] K Suzuki, K Tanizawa, T Matsukawa, G W Cong, S H Kim et al. Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch. Opt Express, 22, 3887-3894(2014).

    [84] K Tanizawa, K Suzuki, M Toyama, M Ohtsuka, N Yokoyama et al. Ultra-compact 32×32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt Express, 23, 17599-17606(2015).

    [85] T Goh, A Himeno, M Okuno, H Takahashi, K Hattori. High-extinction ratio and low-loss silica-based 8×8 strictly nonblocking thermooptic matrix switch. J Lightwave Technol, 17, 1192-1199(1999).

    [86] 2006 European Conference on Optical Communication (ECOC 2006) OThV4 (IEEE, 2006); http://doi.org/10.1109/ECOC.2006.4801113.

    [87] M Bahadori, A Gazman, N Janosik, S Rumley, Z Y Zhu et al. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J Lightwave Technol, 36, 773-788(2017).

    [88] L J Lu, S Y Zhao, L J Zhou, D Li, Z X Li et al. 16×16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt Express, 24, 9295-9307(2016).

    [89] 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, 1-3 (IEEE, 2016). https://ieeexplore.ieee.org/document/7537295.

    [90] L Qiao, W J Tang, T Chu. 32×32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci Rep, 7, 42306(2017).

    [91] Optical Fiber Communication Conference Th1G.2 (OSA, 2018); http://doi.org/10.1364%2FOFC.2018.Th1G.2.

    [92] N Dupuis, B G Lee, A V Rylyakov, D M Kuchta, C W Baks et al. Design and fabrication of low-insertion-loss and low-crosstalk broadband 2×2 Mach-zehnder silicon photonic switches. J Lightwave Technol, 33, 3597-3606(2015).

    [93] N Dupuis, A V Rylyakov, C L Schow, D M Kuchta, C W Baks et al. Ultralow crosstalk nanosecond-scale nested 2×2 Mach-Zehnder silicon photonic switch. Opt Lett, 41, 3002-3005(2016).

    [94] Optical Fiber Communication Conference Th4B.6 (OSA, 2018); http://doi.org/10.1364/OFC.2018.Th4B.6.

    [95] N Sherwood-Droz, H Wang, L Chen, B G Lee, A Biberman et al. Optical 4×4 hitless silicon router for optical networks-on-chip (NoC). Opt Express, 16, 15915-15922(2008).

    [96] B G Lee, A Biberman, P Dong, M Lipson, K Bergman. All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photonics Technol Lett, 20, 767-769(2008).

    [97] A Biberman, H L R Lira, K Padmaraju, N Ophir, J Chan et al. Broadband silicon photonic electrooptic switch for photonic interconnection networks. IEEE Photonics Technol Lett, 23, 504-506(2011).

    [98] A S P Khope, T Hirokawa, A M Netherton, M Saeidi, Y Xia et al. On-chip wavelength locking for photonic switches. Opt Lett, 42, 4934-4937(2017).

    [99] K Padmaraju, D F Logan, T Shiraishi, J J Ackert, A P Knights et al. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J Lightwave Technol, 32, 505-512(2014).

    [100] X L Zhu, K Padmaraju, L W Luo, S Yang, M Glick et al. Fast wavelength locking of a microring resonator. IEEE Photonics Technol Lett, 26, 2365-2368(2014).

    [101] P DasMahapatra, R Stabile, A Rohit, K A Williams. Optical crosspoint matrix using broadband resonant switches. IEEE J Sel Top Quant Electron, 20, 5900410(2014).

    [102] D Nikolova, D M Calhoun, Y Liu, S Rumley, A Novack et al. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsyst Nanoeng, 3, 16071(2017).

    [103] R M Marino, Jr W R Davis. Jigsaw: a foliage-penetrating 3D imaging laser radar system. Lincoln Lab J, 15, 23-36(2005).

    [104] J K Doylend, M J R Heck, J T Bovington, J D Peters, M L Davenport et al. Hybrid silicon free-space source with integrated beam steering. Proc SPIE, 8629, 862911(2013).

    [105] C V Poulton, A Yaacobi, D B Cole, M J Byrd, M Raval et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt Lett, 42, 4091-4094(2017).

    [106] P F McManamon, P J Bos, M K Escuti, J Heikenfeld, S Serati et al. A review of phased array steering for narrow-band electrooptical systems. Proc IEEE, 97, 1078-1096(2009).

    [107] A Schweinsberg, Z M Shi, J E Vornehm, R W Boyd. A slow-light laser radar system with two-dimensional scanning. Opt Lett, 37, 329-331(2012).

    [108] C J Henderson, D G Leyva, T D Wilkinson. Free space adaptive optical interconnect at 1.25 Gb/s, with beam steering using a ferroelectric liquid-crystal SLM. J Lightwave Technol, 24, 1989-1997(2006).

    [109] J K Doylend, M J R Heck, J T Bovington, J D Peters, L A Coldren et al. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt Express, 19, 21595-21604(2011).

    [110] J C Hulme, J K Doylend, M J R Heck, J D Peters, M L Davenport et al. Fully integrated hybrid silicon two dimensional beam scanner. Opt Express, 23, 5861-5874(2015).

    [111] 2011 IEEE Intelligent Vehicles Symposium (IV) 163-168 (IEEE, 2011); http://doi.org/10.1109/IVS.2011.5940562.

    [112] J F Lalonde, N Vandapel, D F Huber, M Hebert. Natural terrain classification using three-dimensional ladar data for ground robot mobility. J Field Robot, 23, 839-861(2006).

    [113] Y J Lin, J Hyyppä, A Jaakkola. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci Remote Sens Lett, 8, 426-430(2011).

    [114] J H Schween, A Hirsikko, U Löhnert, S Crewell. Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment. Atmos Meas Tech, 7, 3685-3704(2014).

    [115] S R Davis, S D Rommel, D Gann, B Luey, J D Gamble et al. A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers. Proc SPIE, 9832, 98320K(2016).

    [116] Proceedings of the Materials Research Society Symposium, San Francisco, CA, USA, 1076 (2008); http://doi.org/10.1557/PROC-1076-K04-06.

    [117] C V Poulton, A Yaacobi, D B Cole, M J Byrd, M Raval et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt Lett, 42, 21-24(2017).

    [118] P Iovanna, F Cavaliere, F Testa, S Stracca, G Botarri et al. Future proof optical network infrastructure for 5G transport. J Opt Commun Netw, 8(2016).

    [119] Y C Shen, N C Harris, S Skirlo, M Prabhu, T B Jones et al. Deep learning with coherent nanophotonic circuits. Nat Photon, 11, 441-446(2017).

    [120] H T Peng, M A Nahmias, T F de Lima, A N Tait, B J Shastri. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quant Electron, 24, 6101715(2018).

    [121] P Cheben, R Halir, J H Schmid, H A Atwater, D R Smith. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    Kiyosh Asakawa, Yoshimasa Sugimoto, Shigeru Nakamura. Silicon photonics for telecom and data-com applications[J]. Opto-Electronic Advances, 2020, 3(10): 200011-1
    Download Citation