• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170601 (2019)
Yeming Zhang1 and Jianrong Qiu1、2、*
Author Affiliations
  • 1 School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
  • 2 College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP56.170601 Cite this Article Set citation alerts
    Yeming Zhang, Jianrong Qiu. Fabrication and Application of Special Optical Fibers Using Melt-in-Tube Method[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170601 Copy Citation Text show less
    References

    [1] Liao Y B, Yuan L B, Tian Q. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 38, 0328001(2018).

    [2] Liu Y Z, Xing Y B, Xu Z W et al. Research progress in high power Tm 3+-doped silica fiber lasers [J]. Laser & Optoelectronics Progress, 55, 050004(2018).

    [3] Liu Z J, Bian J Y, Huang Y et al. Research progress on rare earth ions doped chalcogenide fiber for mid-infrared luminescence[J]. Laser & Optoelectronics Progress, 54, 020003(2017).

    [4] Wang Y B, Li J Y. Status and development tendency of high power ytterbium doped fibers[J]. Chinese Journal of Lasers, 44, 0201009(2017).

    [5] Taylor G F. A method of drawing metallic filaments and a discussion of their properties and uses[J]. Physical Review, 23, 655-660(1924). http://prola.aps.org/abstract/PR/v23/i5/p655_1

    [6] Snitzer E, Tumminelli R. SiO2-clad fibers with selectively volatilized soft-glass cores[J]. Optics Letters, 14, 757-759(1989). http://europepmc.org/abstract/MED/19752959

    [7] Wang W C, Zhou B, Xu S H et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 101, 90-171(2019).

    [8] Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications[J]. Applied Optics, 34, 6848-6854(1995). http://www.opticsinfobase.org/ao/fulltext.cfm?uri=ao-34-30-6848

    [9] Tick P A, Borrelli N F, Reaney I M. The relationship between structure and transparency in glass-ceramic materials[J]. Optical Materials, 15, 81-91(2000). http://www.sciencedirect.com/science/article/pii/S0925346700000173

    [10] Peng W C, Fang Z J, Ma Z J et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb 3+-Er 3+codoped CaF2 nanocrystals [J]. Nanotechnology, 27, 405203(2016). http://europepmc.org/abstract/MED/27576586

    [11] Fang Z J, Xiao X S, Wang X et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Scientific Reports, 7, 44456(2017). http://europepmc.org/abstract/MED/28358045

    [12] Kang S L, Yu H, Ouyang T C et al. Novel Er 3+/Ho 3+-codoped glass-ceramic fibers for broadband tunable mid-infrared fiber lasers [J]. Journal of the American Ceramic Society, 101, 3956-3967(2018).

    [13] Huang X J, Fang Z J, Peng Z X et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers[J]. Optics Express, 25, 19691-19700(2017). http://europepmc.org/abstract/MED/29041657

    [14] Fang Z J, Zheng S P, Peng W C et al. Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method[J]. Journal of the American Ceramic Society, 99, 856-859(2016). http://onlinelibrary.wiley.com/doi/10.1111/jace.14060/pdf

    [15] Fang Z J, Zheng S P, Peng W C et al. Fabrication and characterization of glass-ceramic fiber-containing Cr 3+ doped ZnAl2O4 nanocrystals [J]. Journal of the American Ceramic Society, 98, 2772-2775(2015).

    [16] Fang Z J, Zheng S P, Peng W C et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment [J]. Optics Express, 23, 28258-28263(2015). http://europepmc.org/abstract/MED/26561096

    [17] Yu Y Z, Fang Z J, Ma C S et al. Mesoscale engineering of photonic glass for tunable luminescence[J]. NPG Asia Materials, 8, e318(2016). http://www.nature.com/articles/am2016156

    [18] Kang S L, Fang Z J, Huang X J et al. Precisely controllable fabrication of Er 3+-doped glass ceramic fibers: novel mid-infrared fiber laser materials [J]. Journal of Materials Chemistry C, 5, 4549-4556(2017).

    [19] Huang X J, Fang Z J, Kang S L et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. Journal of Materials Chemistry C, 5, 7927-7934(2017). http://www.onacademic.com/detail/journal_1000039987398410_7187.html

    [20] Cavillon M, Furtick J, Kucera C J et al. Brillouin properties of a novel strontium aluminosilicate glass optical fiber[J]. Journal of Lightwave Technology, 34, 1435-1441(2016). http://www.opticsinfobase.org/abstract.cfm?uri=jlt-34-6-1435

    [21] Cavillon M, Kucera C J, Hawkins T W et al. Oxyfluoride core silica-based optical fiber with intrinsically low nonlinearities for high energy laser applications[J]. Journal of Lightwave Technology, 36, 284-291(2018). http://ieeexplore.ieee.org/document/7993000/

    [22] Ballato J, Hawkins T, Foy P et al. Silicon optical fiber[J]. Optics Express, 16, 18675-18683(2008).

    [23] Ballato J, Hawkins T, Foy P et al. Binary III-V semiconductor core optical fiber[J]. Optics Express, 18, 4972-4979(2010). http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-5-4972

    [24] Tang G W, Qian Q, Wen X et al. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers[J]. Optics Express, 23, 23624-23633(2015). http://www.ncbi.nlm.nih.gov/pubmed/26368460

    [25] Tang G W, Qian Q, Wen X et al. Phosphate glass-clad tellurium semiconductor core optical fibers[J]. Journal of Alloys and Compounds, 633, 1-4(2015). http://www.sciencedirect.com/science/article/pii/S0925838815004156

    [26] Healy N, Mailis S, Bulgakova N M et al. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres[J]. Nature Materials, 13, 1122-1127(2014). http://www.tandfonline.com/servlet/linkout?suffix=cit0040&dbid=8&doi=10.1080%2F10426507.2017.1393422&key=25262096

    [27] Healy N, Fokine M, Franz Y et al. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss[J]. Advanced Optical Materials, 4, 1004-1008(2016). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500784/pdf

    [28] Nordstrand E F, Dibbs A N, Eraker A J et al. Alkaline oxide interface modifiers for silicon fiber production[J]. Optical Materials Express, 3, 651-657(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ome-3-5-651

    [29] Hou C, Jia X T, Wei L et al. Crystalline silicon core fibres from aluminium core preforms[J]. Nature Communications, 6, 6248(2015). http://www.nature.com/articles/ncomms7248

    [30] McMillen C, Brambilla G, Morris S et al. . On crystallographic orientation in crystal core optical fibers II: effects of tapering[J]. Optical Materials, 35, 93-96(2012). http://www.sciencedirect.com/science/article/pii/S092534671200328X

    [31] Qian G Q, Sun M, Tang G W et al. High-performance and high-stability bismuth selenide core thermoelectric fibers[J]. Materials Letters, 233, 63-66(2018). http://www.onacademic.com/detail/journal_1000040423859510_956f.html

    [32] Huang K M, Tang G W, Luo Q H et al. SeTe alloy semiconductor core optical fibers[J]. Materials Research Bulletin, 100, 382-385(2018). http://www.sciencedirect.com/science/article/pii/S0025540817332270

    [33] Tang G W, Liu W W, Qian Q et al. Antimony selenide core fibers[J]. Journal of Alloys and Compounds, 694, 497-501(2017).

    [34] Sun M, Tang G W, Qian G Q et al. In4Se3 alloy core thermoelectric fibers[J]. Materials Letters, 217, 13-15(2018). http://www.sciencedirect.com/science/article/pii/S0167577X18300612

    [35] Sun M, Qian Q, Tang G W et al. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets[J]. APL Materials, 6, 036103(2018).

    [36] Sun M, Tang G W, Liu W W et al. Sn-Se alloy core fibers[J]. Journal of Alloys and Compounds, 725, 242-247(2017). http://www.sciencedirect.com/science/article/pii/S0925838817325239

    [37] Song S, Healy N, Svendsen S K et al. Crystalline GaSb-core optical fibers with room-temperature photoluminescence[J]. Optical Materials Express, 8, 1435-1440(2018). http://www.onacademic.com/detail/journal_1000040491393810_ea2c.html

    [38] Ren H, Shen L, Wu D et al. Nonlinear optical properties of polycrystalline silicon core fibers from telecom wavelengths into the mid-infrared spectral region[J]. Optical Materials Express, 9, 1271-1279(2019). http://arxiv.org/abs/1902.05000

    [39] Huang Y C, Lu Y K, Chen J C et al. Broadband emission from Cr-doped fibers fabricated by drawing tower[J]. Optics Express, 14, 8492-8497(2006). http://www.ncbi.nlm.nih.gov/pubmed/19529227

    [40] Zhang Y M, Wang W W, Li J et al. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser[J]. Journal of the American Ceramic Society, 102, 2551-2557(2019).

    [41] Dragic P, Hawkins T, Foy P et al. Sapphire-derived all-glass optical fibres[J]. Nature Photonics, 6, 627-633(2012). http://www.nature.com/nphoton/journal/v6/n9/nphoton.2012.182/metrics

    [42] Dragic D, Pamato G, Iordache V et al. Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG[J]. New Journal of Physics, 18, 015004(2015). http://adsabs.harvard.edu/abs/2016NJPh...18a5004D

    [43] Mangognia A, Kucera C, Guerrier J et al. Spinel-derived single mode optical fiber[J]. Optical Materials Express, 3, 511-518(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ome-3-4-511

    [44] Ballato J, Hawkins T, Foy P et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 105, 053110(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5132980

    [45] Dragic P D, Ballato J, Hawkins T et al. Feasibility study of Yb∶ YAG-derived silicate fibers with large Yb content as gain media[J]. Optical Materials, 34, 1294-1298(2012). http://www.sciencedirect.com/science/article/pii/S0925346712000900

    [46] Zheng S P, Li J, Yu C L et al. Preparation and characterizations of Yb∶ YAG-derived silica fibers drawn by on-line feeding molten core approach[J]. Ceramics International, 43, 5837-5841(2017). http://www.sciencedirect.com/science/article/pii/S0272884217301463

    [47] Zheng S P, Li J, Yu C L et al. Preparation and characterizations of Nd∶YAG ceramic derived silica fibers drawn by post-feeding molten core approach[J]. Optics Express, 24, 24248-24254(2016). http://www.ncbi.nlm.nih.gov/pubmed/27828156

    [48] Zhang Y M, Qian G Q, Xiao X S et al. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method[J]. Journal of the American Ceramic Society, 101, 1616-1622(2018). http://onlinelibrary.wiley.com/doi/10.1111/jace.15320/full

    [49] Zhang Y M, Qian G Q, Xiao X S et al. The preparation of yttrium aluminosilicate (YAS) glass fiber with heavy doping of Tm 3+ from polycrystalline YAG ceramics [J]. Journal of the American Ceramic Society, 101, 4627-4633(2018). http://www.irgrid.ac.cn/handle/1471x/1644849?mode=full&submit_simple=Show+full+item+record

    [50] Tuggle M, Kucera C, Hawkins T et al. Highly nonlinear yttrium-aluminosilicate optical fiber with a high intrinsic stimulated Brillouin scattering threshold[J]. Optics Letters, 42, 4849-4852(2017). http://www.ncbi.nlm.nih.gov/pubmed/29216126

    Yeming Zhang, Jianrong Qiu. Fabrication and Application of Special Optical Fibers Using Melt-in-Tube Method[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170601
    Download Citation