• Advanced Photonics
  • Vol. 4, Issue 2, 026002 (2022)
Zilong Zhang1、2、3、*, Yuan Gao1、2、3, Xiangjia Li4, Xin Wang1、2、3, Suyi Zhao1、2、3, Qiang Liu5、6, and Changming Zhao1、2、3
Author Affiliations
  • 1Beijing Institute of Technology, School of Optics and Photonics, Beijing, China
  • 2Ministry of Education, Key Laboratory of Photoelectronic Imaging Technology and System, Beijing, China
  • 3Ministry of Industry and Information Technology, Key Laboratory of Photonics Information Technology, Beijing, China
  • 4Arizona State University, School for Engineering of Matter, Transport and Energy, Department of Aerospace and Mechanical Engineering, Tempe, Arizona, United States
  • 5Ministry of Education, Key Laboratory of Photonic Control Technology (Tsinghua University), Beijing, China
  • 6Tsinghua University, Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Beijing, China
  • show less
    DOI: 10.1117/1.AP.4.2.026002 Cite this Article Set citation alerts
    Zilong Zhang, Yuan Gao, Xiangjia Li, Xin Wang, Suyi Zhao, Qiang Liu, Changming Zhao. Second harmonic generation of laser beams in transverse mode locking states[J]. Advanced Photonics, 2022, 4(2): 026002 Copy Citation Text show less
    References

    [1] D. H. Auston. Transverse mode locking. IEEE J. Quantum Electron., 4, 420-422(1968).

    [2] M. Brambilla et al. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A, 43, 5090-5113(1991).

    [3] G. Huyet et al. Spatiotemporal dynamics of lasers with a large Fresnel number. Phys. Rev. Lett., 75, 4027-4030(1995).

    [4] Y. F. Chen, Y. P. Lan. Formation of optical vortex lattices in solid state microchip lasers: spontaneous transverse mode locking. Phys. Rev. A, 64, 063807(2001).

    [5] M.-D. Wei, C.-H. Chen, K.-C. Tu. Spatial and temporal instabilities in a passively Q-switched Nd:YAG laser with a Cr4+:YAG saturable absorber. Opt. Express, 12, 3972-3980(2004).

    [6] G. D’Alessandro et al. Average patterns and coherent phenomena in wide aperture lasers. Phys. Rev. E, 69, 066212(2004).

    [7] K. Otsuka, S. C. Chu. Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping. Opt. Lett., 34, 10-12(2009).

    [8] J. Scheuer, M. Orenstein. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science, 285, 230-233(1999).

    [9] J. Jimenez-Garcia et al. Spontaneous formation of vector vortex beams in vertical-cavity surface-emitting lasers with feedback. Phys. Rev. Lett., 119, 113902(2017).

    [10] L. G. Wright et al. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [11] T. R. Zhang, H. R. Choo, M. C. Downer. Phase and group velocity matching for second harmonic generation of femtosecond pulses. Appl. Opt., 29, 3927-3933(1990).

    [12] J.-Y. Zhang et al. Second-harmonic generation from regeneratively amplified femtosecond laser pulses in BBO and LBO crystals. J. Opt. Soc. Am. B, 15, 200-209(1998).

    [13] H. Zhu et al. Efficient second harmonic generation of femtosecond laser at 1 μm. Opt. Express, 12, 2150-2155(2004).

    [14] I. A. Begishev et al. Limitation of second-harmonic generation of femtosecond Ti:sapphire laser pulses. J. Opt. Soc. Am. B, 21, 318-322(2004).

    [15] N. Cusnir, M. E. Anderson. Second harmonic generation of femtosecond vortex beams with a programmable pulse shaper. Front. Opt.(2009).

    [16] N. A. Chaitanya et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams. Opt. Lett., 40, 2614-2617(2015).

    [17] J. Qian et al. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Res., 8, 421-425(2020).

    [18] S. Li et al. Managing orbital angular momentum in second-harmonic generation. Phys. Rev. A, 88, 035801(2013).

    [19] D. S. Ding et al. Linear up-conversion of orbital angular momentum. Opt. Lett., 37, 3270-3272(2012).

    [20] G. Walker, A. S. Arnold, S. Franke-Arnold. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett., 108, 243601(2012).

    [21] A. Beržanskis et al. Sum-frequency mixing of optical vortices in nonlinear crystals. Opt. Commun., 150, 372-380(1998).

    [22] H. Wu et al. Radial modal transitions of Laguerre-Gauss modes during parametric up-conversion: towards the full-field selection rule of spatial modes. Phys. Rev. A, 101, 063805(2020).

    [23] Y. Tang et al. Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics, 14, 658-662(2020).

    [24] Z. Zhou et al. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. Opt. Express, 22, 20298-20310(2014).

    [25] L. J. Pereira et al. Orbital-angular-momentum mixing in type-II second-harmonic generation. Phys. Rev. A, 96, 053856(2017).

    [26] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [27] T. Bell, M. Kgomo, S. Ngcobo. Digital laser for on-demand intracavity selective excitation of second harmonic higher-order modes. Opt. Express, 28, 16907-16923(2020).

    [28] A. S. Rao, K. Miamoto, T. Omatsu. Ultraviolet intracavity frequency-doubled Pr3+:LiYF4 orbital Poincaré laser. Opt. Express, 28, 37397-37405(2020).

    [29] N. M. Litchinitser. Structured light meets structured matter. Science, 337, 1054-1055(2012).

    [30] S. Syubaev et al. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express, 25, 10214-10223(2017).

    [31] M. A. Bandres, J. C. Gutiérrez-Vega. Ince–Gaussian beams. Opt. Lett., 29, 144-146(2004).

    [32] K. Staliunas, C. O. Weiss. Nonstationary vortex lattices in large-aperture class B lasers. J. Opt. Soc. Am. B, 12, 1142-1149(1995).

    [33] A. K. Wojcika et al. Nonlinear optical interactions of laser modes in quantum cascade lasers. J. Mod. Opt., 58, 727-742(2011).

    [34] Y. F. Chen, Y. P. Lan. Transverse pattern formation of optical vortices in a microchip laser with a large Fresnel number. Phys. Rev. A, 65, 013802(2001).

    [35] C. Tamm. Frequency locking of two transverse optical modes of a laser. Phys. Rev. A, 38, 5960-5963(1988).

    [36] E. Louvergneaux et al. Coupled longitudinal and transverse self-organization in lasers induced by transverse-mode locking. Phys. Rev. A, 57, 4899-4904(1998).

    [37] Y. Shen et al. Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser. J. Opt. Soc. Am. B, 35, 2940-2944(2018).

    [38] Z. Zhang, C. Zhao. Spontaneous phase and frequency locking of transverse modes in different orders. Phys. Rev. Appl., 13, 024010(2020).

    [39] Y. Li et al. Sum frequency generation with two orbital angular momentum carrying laser beams. J. Opt. Soc. Am. B, 32, 407-411(2015).

    [40] H. Yu et al. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser. Sci. Rep., 3, 1085(2013).

    [41] H. Yang et al. Parametric up-conversion of Ince-Gaussian modes. Opt. Lett., 45, 3034-3037(2020).

    [42] S. A. Collins. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 60, 1168-1177(1970).

    [43] Y. Li et al. Dynamic mode evolution and phase transition of twisted light in nonlinear process. J. Mod. Opt., 63, 2271-2278(2016).

    [44] Z. Zhang et al. Self-Q-switch regime based on a beat effect with a dual-frequency microchip laser. Phys. Rev. A, 98, 033831(2018).

    [45] Z. Zhang et al. Direct generation of vortex beam with a dual-polarization microchip laser. IEEE Photonics Technol. Lett., 31, 1221-1224(2019).

    Zilong Zhang, Yuan Gao, Xiangjia Li, Xin Wang, Suyi Zhao, Qiang Liu, Changming Zhao. Second harmonic generation of laser beams in transverse mode locking states[J]. Advanced Photonics, 2022, 4(2): 026002
    Download Citation