• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 71003 (2018)
Zhang Jing, Fu Jianpeng, and Li Xinhui*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.071003 Cite this Article Set citation alerts
    Zhang Jing, Fu Jianpeng, Li Xinhui. Low-Rank Regularized Heterogeneous Tensor Decomposition Algorithm for Subspace Clustering[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71003 Copy Citation Text show less
    References

    [1] Kolda T G, Bader B W. Tensord ecompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.

    [2] Vu X T, Maire S, Chaux C, et al. A new stochastic optimization algorithm to decompose large nonnegative tensors[J]. IEEE Signal Processing Letters, 2015, 22(10): 1713-1717.

    [3] Xu D, Liu H W, Wu L, et al. High-order singular value decomposition applied in aero-optical effects analysis[J]. Acta Optica Sinica, 2010, 30(12): 3367-3372.

    [4] Du L M, Li J, Jin G, et al. Compression of interference hyperspectral image based on FHALS-NTD[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3155-3160.

    [5] Li J, Han S L, Lü Z M, et al. Multi-spectral image compresssion based on Tucker decomposition in integer wavelet domain[J]. Journal of Optoelectronics·Laser, 2012, 23(12): 2418-2425.

    [6] Li Y, Xun X C, Wang Q Z. Image encryption based on higher-order singular value decomposition[J]. Infrared and Laser Engineering, 2014, 43(S1): 243-247.

    [7] Xia J P, Zhou J L, He K, et al. Color image watermark based on DWT and Tucker decomposition[J]. Application Research of Computers,2010, 27(2): 798-800.

    [8] Tucker L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311.

    [9] Kiers H A L. Towards a standardized notation and terminology in multiway analysis[J]. Journal of Chemometrics, 2015, 14(3): 105-122.

    [10] Kolda T G. Orthogonal tensor decompositions[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 23(1): 243-255.

    [11] De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(R1, R2, …, RN) approximation of higher-order tensors[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 2262-2271.

    [12] De Lathauwer L, Moor B D, Vandewalle J. A multilinear singular value decomposition[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 1253-1278.

    [13] Phan A H, Cichocki A. Tensor decompositions for feature extraction and classification of high dimensional datasets[J]. Nonlinear Theory and Its Applications, 2010, 1(1): 37-68.

    [14] Zhang Z Y, Li T, Ding C. Non-negative tri-factor tensor decomposition with applications[J]. Knowledge and Information Systems, 2013, 34(2): 243-265.

    [15] Zhou G X, Cichocki A, Zhao Q B, et al. Nonnegative matrix and tensor factorizations: an algorithmic perspective[J]. IEEE Signal Processing Magazine, 2014, 31(3): 54-65.

    [16] Cohen J, Farias R C, Comon P. Fastde composition of large nonnegative tensors[J]. IEEE Signal Processing Letters, 2015, 22(7): 862-866.

    [17] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401: 788-791.

    [18] Shashua A, Hazan T. Non-negative tensor factorization with applications to statistics and computer vision[C]∥Proceedings of the 22nd International Conference on Machine, 2005: 792-799.

    [19] Wu F, Tan X, Yang Y, et al. Supervised nonnegative tensor factorization with maximum-margin constraint[C]∥Proceedings of the 27th AAAI Conference on Artificial Intelligence, 2013: 962-968.

    [20] Zhou G X, Cichocki A, Xie S L. Fast nonnegative matrix/tensor factorization based on low-rank approximation[J]. IEEE Transactions on Signal Processing, 2012, 60(6): 2928-2940.

    [21] Sun Y F, Gao J B, Hong X, et al. Heterogeneous tensor decomposition for clustering via manifold optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(3): 476-489.

    [22] Zhou G X, Cichocki A, Zhao Q B, et al. Efficient nonnegative Tucker decompositions: algorithms and uniqueness[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4990-5003.

    [23] Lai Z H, Xu Y, Yang J, et al. Sparse tensor discriminant analysis[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3904-3915.

    [24] Heiler M, Schnrr C. Controlling sparseness in non-negative tensor factorization[C]∥Proceedings of European Conference on Computer Vision, 2006: 56-67.

    [25] Liu J, Liu J, Wonka P, et al. Sparse non-negative tensor factorization using columnwise coordinate descent[J]. Pattern Recognition, 2012, 45(1): 649-656.

    [26] Perros I, Chen R, Vuduc R, et al. Sparse Hierarchical Tucker factorization and its application to healthcare[C]∥Proceedings of IEEE International Conference on Data Mining, 2015: 943-948.

    [27] Zhang C Q, Fu H Z, Liu S, et al. Low-rank tensor constrained multiview subspace clustering[C]∥Proceedings of IEEE International Conference on Computer Vision, 2015: 1582-1590.

    [28] Jia C C, Fu Y. Low-rank tensor subspace learning for RGB-D action recognition[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4641-4652.

    [29] Fu Y F, Gao J B, Tien D, et al. Tensor LRR and sparse coding-based subspace clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(10): 2120-2133.

    [30] Liu J, Musialski P, Wonka P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-220.

    [31] Wang H, Nie F P, Huang H. Low-rank tensor completion with spatio-temporal consistency[C]∥Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014: 2846-2852.

    [32] Yang Y N, Feng Y L, Suykens J A K. A rank-one tensor updating algorithm for tensor completion[J]. IEEE Signal Processing Letters, 2015, 22(10): 1633-1637.

    [33] Luo L, Feng X C, Zhang X D, et al. An image denoising method based on non-local two-side random projection and low rank approximation[J]. Journal of Electronics & Information Technology, 2013, 35(1): 99-105.

    [34] Peng Y G, Suo J L, Dai Q H, et al. From compressed sensing to low-rank matrix recovery: theory and applications[J]. Acta Automatica Sinica, 2013, 39(7): 981-994.

    [35] Qiu L D, Fu P, Lin N, et al. Discriminative low-rank projection dictionary pair learning[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111003.

    [36] Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.

    [37] Zhou W Z, Chen G L, Du S S, et al. An improved iterative closest point algorithm using clustering[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051202.

    [38] Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]∥Proceedings of the 13th International Conference on Neural Information Processing Systems, 2000: 535-541.

    [39] Schmidt M N, Winther O, Hansen L K. Bayesian non-negative matrix factorization[C]∥Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, 2009: 540-547.

    [40] Lin C J. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation, 2007, 19(10): 2756-2779.

    [41] Gu Q Q, Zhou J. Co-clustering on manifolds[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 359-368.

    Zhang Jing, Fu Jianpeng, Li Xinhui. Low-Rank Regularized Heterogeneous Tensor Decomposition Algorithm for Subspace Clustering[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71003
    Download Citation