• Photonics Research
  • Vol. 6, Issue 7, 726 (2018)
Silvia Romano1、†,*, Gianluigi Zito2、†, Stefania Torino1, Giuseppe Calafiore3, Erika Penzo3, Giuseppe Coppola1, Stefano Cabrini3, Ivo Rendina1, and Vito Mocella1
Author Affiliations
  • 1Institute for Microelectronics and Microsystems, Unit of Naples, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
  • 2Institute of Protein Biochemistry, National Council of Research, Via Pietro Castellino, 80131 Naples, Italy
  • 3Lawrence Berkeley National Laboratory, Molecular Foundry Division, 67 Cyclotron Road, Berkeley, California 94720, USA
  • show less
    DOI: 10.1364/PRJ.6.000726 Cite this Article Set citation alerts
    Silvia Romano, Gianluigi Zito, Stefania Torino, Giuseppe Calafiore, Erika Penzo, Giuseppe Coppola, Stefano Cabrini, Ivo Rendina, Vito Mocella. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 2018, 6(7): 726 Copy Citation Text show less
    References

    [1] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sens. Actuators B, 54, 3-15(1999).

    [2] R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. B. Tendler. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials, 21, 1823-1835(2000).

    [3] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta, 620, 8-26(2008).

    [4] T. Linnert, P. Mulvaney, A. Henglein. Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate. J. Phys. Chem., 97, 679-682(1993).

    [5] R. P. Kooyman, H. Kolkman, J. Van Gent, J. Greve. Surface plasmon resonance immunosensors: sensitivity considerations. Anal. Chim. Acta, 213, 35-45(1988).

    [6] E. M. Yeatman. Resolution and sensitivity in surface plasmon microscopy and sensing. Biosens. Bioelectron., 11, 635-649(1996).

    [7] J. Homola. On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuators B, 41, 207-211(1997).

    [8] J. H. H. Liao, C. L. Nehl. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 1, 201-208(2006).

    [9] J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [10] A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, A. Zayats. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009).

    [11] J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, E. Liang. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt. Express, 21, 25159-25166(2013).

    [12] W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, W. Zhang. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt. Lett., 37, 3366-3368(2012).

    [13] Y.-N. Zhang, Y. Zhao, R.-Q. Lv. A review for optical sensors based on photonic crystal cavities. Sens. Actuators A, 233, 374-389(2015).

    [14] R. D. M. J. Joannopoulos, S. G. Johnson, J. N. Winn. Photonic Crystals: Molding the Flow of Light(2008).

    [15] T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, A. Forchel. Photonic crystal cavity-based gas sensor. Appl. Phys. Lett., 92, 261112(2008).

    [16] A. Di Falco, L. O’Faolain, T. F. Krauss. Chemical sensing in slotted photonic crystal heterostructure cavities. Appl. Phys. Lett., 94, 063503(2009).

    [17] S.-H. Kwon, T. Sunner, M. Kamp, A. Forchel. Optimization of photonic crystal cavity for chemical sensing. Opt. Express, 16, 11709-11717(2008).

    [18] H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys. Rev. B, 79, 085112(2009).

    [19] D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, A. Lambrecht. Miniature infrared gas sensors using photonic crystals. J. Appl. Phys., 109, 083117(2011).

    [20] Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, R. T. Chen. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield. IEEE J. Sel. Top. Quantum Electron., 20, 171-180(2014).

    [21] J. von Neumann, E. P. Wigner. Über merkwürdige diskrete Eigenwerte. Phys. Z., 30, 465-467(1929).

    [22] F. H. Stillinger, D. R. Herrick. Bound states in the continuum. Phys. Rev. A, 11, 446-454(1975).

    [23] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [24] D. Marinica, A. Borisov, S. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [25] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [26] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [27] R. Porter, D. V. Evans. Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays. Wave Motion, 43, 29-50(2005).

    [28] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [29] V. Mocella, S. Romano. Giant field enhancement in photonic resonant lattices. Phys. Rev. B, 92, 155117(2015).

    [30] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kanté. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [31] B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, O. Shapira. Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proc. Natl. Acad. Sci. USA, 110, 13711-13716(2013).

    [32] C. Wu, N. Arju, J. Fan, I. Brener, G. Shvets. Spectrally selective chiral silicon metasurfaces based on infrared fano resonances. Nat. Commun., 5, 3892(2016).

    [33] S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, V. Mocella. Optical biosensors based on photonic crystals supporting bound states in the continuum. Materials, 11, 526(2018).

    [34] F. S. Damos, R. C. Luz, L. T. Kubota. Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance. Langmuir, 21, 602-609(2005).

    [35] K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 15, 621-627(2016).

    [36] S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, V. Mocella. Observation of resonant states in negative refractive photonic crystals. J. Eur. Opt. Soc., 9, 14006(2014).

    [37] S. Romano, S. Cabrini, I. Rendina, V. Mocella. Guided resonance in negative index photonic crystals: a new approach. Light: Sci. Appl., 3, e120(2014).

    [38] E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, V. Mocella. Plasmon-like surface states in negative refractive index photonic crystals. Appl. Phys. Lett., 102, 081113(2013).

    [39] G. Zito, G. Rusciano, A. Sasso. Dark spots along slowly scaling chains of plasmonic nanoparticles. Opt. Express, 24, 13584-13589(2016).

    [40] G. Zito, G. Rusciano, A. Sasso. Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles. J. Chem. Phys., 145, 054708(2016).

    [41] Y. Xia, G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci., 28, 153-184(1998).

    [42] C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun., 5, 3892(2014).

    [43] A. B. Dahlin, J. O. Tegenfeldt, F. Höök. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem., 78, 4416-4423(2006).

    [44] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, G. Girolami. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett., 29, 1093-1095(2004).

    [45] D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, J. J. Finley. Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett., 93, 181103(2008).

    [46] Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, R. T. Chen. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield. IEEE J. Sel. Top. Quantum Electron., 20, 6900710(2014).

    [47] J. Pottage, E. Silvestre, P. S. J. Russell. Vertical-cavity surface-emitting resonances in photonic crystal films. J. Opt. Soc. Am. A, 18, 442-447(2001).

    [48] S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, S. M. Weiss. Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density. ACS Photon., 1, 590-597(2014).

    CLP Journals

    [1] A. S. Lal Krishna, Sruti Menon, Asish Prosad, Varun Raghunathan. Mid-infrared quasi-BIC resonances with sub-wavelength slot mode profiles in germanium-based coupled guided-mode resonance structures[J]. Photonics Research, 2022, 10(1): 68

    Silvia Romano, Gianluigi Zito, Stefania Torino, Giuseppe Calafiore, Erika Penzo, Giuseppe Coppola, Stefano Cabrini, Ivo Rendina, Vito Mocella. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 2018, 6(7): 726
    Download Citation