• Laser & Optoelectronics Progress
  • Vol. 57, Issue 15, 150001 (2020)
Li Lin* and Buhong Li**
Author Affiliations
  • Key Laboratory of Opto-Electronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
  • show less
    DOI: 10.3788/LOP57.150001 Cite this Article Set citation alerts
    Li Lin, Buhong Li. Application Progress of Light-Emitting Diode for Photodynamic Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150001 Copy Citation Text show less
    References

    [1] Sorbellini E, Rucco M, Rinaldi F. Photodynamic and photobiological effects of light-emitting diode (LED)therapy in dermatological disease: an update[J]. Lasers in Medical Science, 33, 1431-1439(2018).

    [2] Li B H, Xie S S. Functional photosensitizers for photodynamic therapy: recent developments[J]. Chinese Journal of Laser Medicine & Surgery, 16, 179-185(2007).

    [3] Lian C, Piksa M, Yoshida K et al. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy[J]. Npj Flexible Electronics, 3, 18(2019).

    [4] Wilson B C, Patterson M S. The physics, biophysics and technology of photodynamic therapy[J]. Physics in Medicine and Biology, 53, R61-R109(2008).

    [5] Kim M M, Darafsheh A. Light sources and dosimetry techniques for photodynamic therapy[J]. Photochemistry and Photobiology, 96, 280-294(2020).

    [6] Liang F Q, Shen Y, Gu Y et al[J]. Recent advances in light sources for photodynamic therapy Acta Laser Biology Sinica, 2019, 97-108.

    [7] Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy[J]. Lasers in Medical Science, 17, 173-186(2002).

    [8] Mang T S. Lasers and light sources for PDT: past, present and future[J]. Photodiagnosis and Photodynamic Therapy, 1, 43-48(2004).

    [9] Li Q, Ma S Y, Hu X M et al. Feasibility of light-emitting-diode applied to photodynamic therapy[J]. Optical Technique, 34, 265-268(2008).

    [10] Bui D A, Hauser P C. Analytical devices based on light-emitting diodes - a review of the state-of-the-art[J]. Analytica Chimica Acta, 853, 46-58(2015).

    [11] Huang R X, Wang X H, Guo N P et al. Design of LED light lens array for photodynamic therapy[J]. Automation & Information Engineering, 40, 16-20(2019).

    [12] Sorbellini E, de Padova M P, Rinaldi F. Coupled blue and red light-emitting diodes therapy efficacy in patients with rosacea: two case reports[J]. Journal of Medical Case Reports, 14, 22(2020).

    [13] Yamagishi K, Kirino I, Takahashi I et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy[J]. Nature Biomedical Engineering, 3, 27-36(2019).

    [14] Hempstead J, Jones D P, Ziouche A et al. Low-cost photodynamic therapy devices for global health settings: characterization of battery-powered LED performance and smartphone imaging in 3D tumor models[J]. Scientific Reports, 5, 10093(2015).

    [15] Park D, Choi E J, Weon K Y et al. Non-invasive photodynamic therapy against-periodontitis-causing bacteria[J]. Scientific Reports, 9, 8248(2019).

    [16] Wu Y, Wang P R, Zhang L L et al. Enhancement of photodynamic therapy for bowen's disease using plum-blossom needling to augment drug delivery[J]. Dermatologic Surgery, 44, 1516-1524(2018).

    [17] Fonda-Pascual P, Alegre-Sánchez A, Harto-Castaño A et al. Low-level light-assisted photodynamic therapy using a wearable cap-like device for the treatment of actinic keratosis of the scalp[J]. Photodiagnosis and Photodynamic Therapy, 25, 136-141(2019).

    [18] Shen J, Liang Q F, Su G Y et al. In vitro effect of toluidine blue antimicrobial photodynamic chemotherapy on staphylococcus epidermidis and staphylococcus aureus isolated from ocular surface infection[J]. Translational Vision Science & Technology, 8, 45(2019).

    [19] Liu T J, Zou B R, Tan Y Q et al. Experimental study on welding small artery with low-power CO2 laser[J]. Proceedings of SPIE, 1616, 555-562(1993).

    [20] Lai X Q, Ning F, Xia X W et al. HMME combined with green light-emitting diode irradiation results in efficient apoptosis on human tongue squamous cell carcinoma[J]. Lasers in Medical Science, 30, 1941-1948(2015).

    [21] Masuda H, Kimura M, Nishioka A et al. Dual wavelength 5-aminolevulinic acid photodynamic therapy using a novel flexible light-emitting diode unit[J]. Journal of Dermatological Science, 93, 109-115(2019).

    [22] Asnaashari M, Ashraf H, Rahmati A et al. A comparison between effect of photodynamic therapy by LED and calcium hydroxide therapy for root canal disinfection against Enterococcus faecalis: a randomized controlled trial[J]. Photodiagnosis and Photodynamic Therapy, 17, 226-232(2017).

    [23] Theodoro L H. Ferro-Alves M L, Longo M, et al. Curcumin photodynamic effect in the treatment of the induced periodontitis in rats[J]. Lasers in Medical Science, 32, 1783-1791(2017).

    [24] Feng L Z, Cheng L, Dong Z L et al. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy[J]. ACS Nano, 11, 927-937(2017).

    [25] ElZorkany H E, Youssef T, Mohamed M B et al. Photothermal versus photodynamic treatment for the inactivation of the bacteria Escherichia coli and Bacillus cereus: an in vitro study[J]. Photodiagnosis and Photodynamic Therapy, 27, 317-326(2019).

    [26] Silva D F. Toledo Neto J L, MacHado M F, et al. Effect of photodynamic therapy potentiated by ultrasonic chamber on decontamination of acrylic and titanium surfaces[J]. Photodiagnosis and Photodynamic Therapy, 27, 345-353(2019).

    [27] Shi X F, Jin W D, Gao H et al. A suppository kit for metronomic photodynamic therapy: the elimination of rectal cancer in situ[J]. Journal of Photochemistry and Photobiology B: Biology, 181, 143-149(2018).

    [28] Sueoka K, Chikama T, Latief M A et al. Time-dependent antimicrobial effect of photodynamic therapy with TONS 504 on Pseudomonas aeruginosa[J]. Lasers in Medical Science, 33, 1455-1460(2018).

    [29] Kimura S, Kuroiwa T, Ikeda N et al. Assessment of safety of 5-aminolevulinic acid-mediated photodynamic therapy in rat brain[J]. Photodiagnosis and Photodynamic Therapy, 21, 367-374(2018).

    [30] Grebinyk A, Grebinyk S, Prylutska S et al. C60 fullerene accumulation in human leukemic cells and perspectives of LED-mediated photodynamic therapy[J]. Free Radical Biology and Medicine, 124, 319-327(2018).

    [31] Silva D F. Toledo Neto J L, MacHado M F, et al. Effect of photodynamic therapy potentiated by ultrasonic chamber on decontamination of acrylic and titanium surfaces[J]. Photodiagnosis and Photodynamic Therapy, 27, 345-353(2019).

    [32] Davies N, Wilson B C. Tetherless fiber-coupled optical sources for extended metronomic photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 4, 184-189(2007).

    [33] Chang M H, Das D, Varde P V et al. Light emitting diodes reliability review[J]. Microelectronics Reliability, 52, 762-782(2012).

    [34] Butler M C, Itotia P N, Sullivan J M. A high-throughput biophotonics instrument to screen for novel ocular photosensitizing therapeutic agents[J]. Investigative Opthalmology & Visual Science, 51, 2705-2720(2010).

    [35] Jori G, Pratesi R, Scalvini M. A multi-led source for photoradiation therapy[M]. //Porphyrins in tumor phototherapy. Boston: Springer, 301-308(1984).

    [36] Lytle A C, Dalton B K, Daniel R et al. Light-emitting diode source for photodynamic therapy[J]. Proceedings of SPIE, 1881, 180-188(1993).

    [37] Matsumoto J, Suzuki K, Yasuda M et al. Photodynamic therapy of human biliary cancer cell line using combination of phosphorus porphyrins and light emitting diode[J]. Bioorganic & Medicinal Chemistry, 25, 6536-6541(2017).

    [38] Jeon Y, Choi H R, Kwon J H et al. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine[J]. Light: Science & Applications, 8, 114(2019).

    [39] Masuda H, Kimura M, Nishioka A et al. Dual wavelength 5-aminolevulinic acid photodynamic therapy using a novel flexible light-emitting diode unit[J]. Journal of Dermatological Science, 93, 109-115(2019).

    [40] Kim J, Shim H J, Yang J et al. Ultrathin quantum dot display integrated with wearable electronics[J]. Advanced Materials, 29, 1700217(2017).

    [41] Yokota T, Zalar P, Kaltenbrunner M et al. Ultraflexible organic photonic skin[J]. Science Advances, 2, e1501856(2016).

    [42] Choi M K, Yang J, Hyeon T et al. Flexible quantum dot light-emitting diodes for next-generation displays[J]. Npj Flexible Electronics, 2, 10(2018).

    [43] White M S, Kaltenbrunner M, Głowacki E D et al. Ultrathin, highly flexible and stretchable PLEDs[J]. Nature Photonics, 7, 811-816(2013).

    [44] Lian C, Piksa M, Yoshida K et al. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy[J]. Npj Flexible Electronics, 3, 18(2019).

    [45] Zhang F, Xue J S, Yu Z N et al. Quantum-dot light emitting device for displays[J]. Chinese Journal of Liquid Crystals and Displays, 27, 163-167(2012).

    [46] Chen H, Yeh T H, He J et al. Flexible quantum dotlight-emitting devices for targeted photomedical applications[J]. Journal of the Society for Information Display, 26, 296-303(2018).

    [47] Samineni V K, Yoon J, Crawford K E et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics[J]. PAIN, 158, 2108-2116(2017).

    [48] Montgomery K L, Yeh A J, Ho J S et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nature Methods, 12, 969-974(2015).

    [49] Iwai Y, Honda S, Ozeki H et al. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice[J]. Neuroscience Research, 70, 124-127(2011).

    [50] Hashimoto M, Hata A, Miyata T et al. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice[J]. Neurophotonics, 1, 011002(2014).

    [51] Zhou J, Kim A, Song S H et al. An ultrasonically powered implantable micro-light source for localized photodynamic therapy. [C]//2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), June 21-25, 2015,Anchorage, AK, USA. New York: IEEE, 15362432(2015).

    [52] Kim A, Zhou J W, Samaddar S et al. An implantable ultrasonically-powered micro-light-source (μLight) for photodynamic therapy[J]. Scientific Reports, 9, 1395(2019).

    [53] Habermann N, Wachs M, Schulz S et al. 58(SC): SCCC25[J]. characterization of planar LED arrays for medical applications. Japanese Journal of Applied Physics(2019).

    [54] Huang Z Y, Li B H. Design of LED light source for photodynamic therapy[J]. Laser & Optoelectronics Progress, 50, 072203(2013).

    [55] Chen D, Zheng H, Huang Z et al. Light-emitting diode-based illumination system for in vitro photodynamic therapy[J]. International Journal of Photoenergy, 2012, 1-6(2012).

    Li Lin, Buhong Li. Application Progress of Light-Emitting Diode for Photodynamic Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150001
    Download Citation