• Photonics Research
  • Vol. 10, Issue 9, 2056 (2022)
Yi Liu1, Chunmei Ouyang1、5、*, Quan Xu1, Xiaoqiang Su2、6、*, Quanlong Yang3, Jiajun Ma1, Yanfeng Li1, Zhen Tian1, Jianqiang Gu1, Liyuan Liu1, Jiaguang Han1, Yunlong Shi2, and Weili Zhang4、7、*
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
  • 2Institute of Solid State Physics, College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China
  • 3Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia
  • 4School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  • 5e-mail: cmouyang@tju.edu.cn
  • 6e-mail: xiaoqiang.su@sxdtdx.edu.cn
  • 7e-mail: weili.zhang@okstate.edu
  • show less
    DOI: 10.1364/PRJ.462119 Cite this Article Set citation alerts
    Yi Liu, Chunmei Ouyang, Quan Xu, Xiaoqiang Su, Quanlong Yang, Jiajun Ma, Yanfeng Li, Zhen Tian, Jianqiang Gu, Liyuan Liu, Jiaguang Han, Yunlong Shi, Weili Zhang. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface[J]. Photonics Research, 2022, 10(9): 2056 Copy Citation Text show less
    References

    [1] N. G. Semaltianos, K. Scott, E. G. Wilson. Electron beam lithography of Moiré patterns. Microelectron. Eng., 56, 233-239(2001).

    [2] B. Chen, K. Lu. Moire pattern nanopore and nanorod arrays by focused ion beam guided anodization and nanoimprint molding. Langmuir, 27, 4117-4125(2011).

    [3] A. Espinha, C. Dore, C. Matricardi, M. I. Alonso, A. R. Goñi, A. Mihi. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photonics, 12, 343-348(2018).

    [4] S. M. Lubin, W. Zhou, A. J. Hryn, M. Huntington, T. W. Odom. High-rotational symmetry lattices fabricated by moiré nanolithography. Nano Lett., 12, 4948-4952(2012).

    [5] S. Balci, A. Kocabas, C. Kocabas, A. Aydinli. Localization of surface plasmon polaritons in hexagonal arrays of moiré cavities. Appl. Phys. Lett., 98, 031101(2011).

    [6] A. Kocabas, S. S. Senlik, A. Aydinli. Slowing down surface plasmons on a moiré surface. Phys. Rev. Lett., 102, 063901(2009).

    [7] C. Kai, B. B. Rajeeva, Z. Wu, M. Rukavina, T. D. Dao, S. Ishii, M. Aono, T. Nagao, Y. Zheng. Moirè nanosphere lithography. ACS Nano, 9, 6031-6040(2015).

    [8] V. Luchnikov, A. Kondyurin, P. Formanek, H. Lichte, M. Stamm. Moiré patterns in superimposed nanoporous thin films derived from block-copolymer assemblies. Nano Lett., 7, 3628-3632(2007).

    [9] C. Jin, B. C. Olsen, E. J. Luber, J. M. Buriak. Preferential alignment of incommensurate block copolymer dot arrays forming Moiré superstructures. ACS Nano, 11, 3237-3246(2017).

    [10] A. Singh, C. Dickinson, K. M. Ryan. Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from moiré interference patterns. ACS Nano, 6, 3339-3345(2012).

    [11] Y. He, S. H. Ko, T. Ye, A. E. Ribbe, C. Mao. Complexity emerges from lattice overlapping: implications for nanopatterning. Small, 4, 1329-1331(2008).

    [12] R. Bistritzer, A. H. Macdonald. Moire bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 108, 12233-12237(2011).

    [13] S. Sunku, G. Ni, B.-Y. Jiang, H. Yoo, A. Sternbach, A. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. J. Watanabe. Photonic crystals for nano-light in moiré graphene superlattices. Science, 362, 1153-1156(2018).

    [14] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi. Signatures of tunable superconductivity in a trilayer graphene moire superlattice. Nature, 572, 215-219(2019).

    [15] C. Mora, N. Regnault, B. A. Bernevig. Flatbands and perfect metal in trilayer moiré graphene. Phys. Rev. Lett., 123, 026402(2019).

    [16] G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. Goldflam, F. Keilmann, B. Özyilmaz, A. C. Neto, X. M. Xie, M. M. Fogler. Plasmons in graphene moiré superlattices. Nat. Mater., 14, 1217-1222(2015).

    [17] H. Z. Zhang, H. Y. Qin, W. X. Zhang, L. Huang, X. D. Zhang. Moiré graphene nanoribbons: nearly perfect absorptions and highly efficient reflections with wide angles. Opt. Express, 30, 2219-2229(2022).

    [18] Q. Zhang, Q. Ou, G. Hu, J. Liu, Z. Dai, M. S. Fuhrer, Q. Bao, C.-W. Qiu. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett., 21, 3112-3119(2021).

    [19] G. Hu, Q. Ou, G. Si, Y. Wu, A. Alù. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [20] K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. Quan, A. Singh. Evidence for moiré excitons in van der Waals heterostructures. Nature, 567, 71-75(2019).

    [21] N. Leconte, J. Jung, S. Lebègue, T. Gould. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation. Phys. Rev. B, 96, 195431(2017).

    [22] E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 567, 81-86(2019).

    [23] G. Hu, J. Shen, C. W. Qiu, A. Alù, S. Dai. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater., 8, 1901393(2020).

    [24] F. He, Y. Zhou, Z. Ye, S.-H. Cho, J. Jeong, X. Meng, Y. Wang. Moiré patterns in 2D materials: a review. ACS Nano, 15, 5944-5958(2021).

    [25] H. N. Barad, H. Kwon, M. Alarcón-Correa, P. Fischer. Large area patterning of nanoparticles and nanostructures: current status and future prospects. ACS Nano, 15, 5861-5875(2021).

    [26] S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, Y. Arakawa. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal. Appl. Phys. Lett., 105, 051107(2014).

    [27] J. Lee, C. T. Chan. Circularly polarized thermal radiation from layer-by-layer photonic crystal structures. Appl. Phys. Lett., 90, 051912(2007).

    [28] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, C. R. Dean. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059-1064(2019).

    [29] Y. Cao, V. Fa Temi, S. Fa Ng, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).

    [30] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 574, 653-657(2019).

    [31] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, D. Goldhaber-Gordon. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365, 605-608(2019).

    [32] C. Repellin, Z. Dong, Y. H. Zhang, T. Senthil. Ferromagnetism in narrow bands of moiré superlattices. Phys. Rev. Lett., 124, 187601(2020).

    [33] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 579, 56-61(2020).

    [34] C. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, Y. Zhang, K. Watanabe, T. Taniguchi, M. Huber. Imaging orbital ferromagnetism in a moiré Chern insulator. Science, 372, 1323-1327(2021).

    [35] X. C. Wu, A. Keselman, C.-M. Jian, K. A. Pawlak, C. Xu. Ferromagnetism and spin-valley liquid states in moiré correlated insulators. Phys. Rev. B, 100, 024421(2019).

    [36] G. Hu, A. Krasnok, Y. Mazor, C. W. Qiu, A. Alù. Moiré hyperbolic metasurfaces. Nano Lett., 20, 3217-3224(2020).

    [37] Q. Zhang, G. Hu, W. Ma, P. Li, A. Krasnok, R. Hillenbrand, A. Alù, C. W. Qiu. Interface nano-optics with van der Waals polaritons. Nature, 597, 187-195(2021).

    [38] G. Hu, C. Zheng, J. Ni, C. W. Qiu, A. Alù. Enhanced light-matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett., 118, 211101(2021).

    [39] G. Hu, M. Wang, Y. Mazor, C. W. Qiu, A. Alù. Tailoring light with layered and moiré metasurfaces. Trends Chem., 3, 342-358(2021).

    [40] Z. Wu, Y. Zheng. Moiré chiral metamaterials. Adv. Opt. Mater., 5, 1700034(2017).

    [41] Z. Wu, Y. Zheng. Moiré metamaterials and metasurfaces. Adv. Opt. Mater., 6, 1701057(2018).

    [42] P. Lodahl, S. Mahmoodian, S. Stobbe, P. Schneeweiss, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [43] M. Yankowitz, J. Jung, E. Laksono, N. Leconte, B. L. Chittari, K. Watanabe, T. Taniguchi, S. Adam, D. Graf, C. R. Dean. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature, 557, 404-408(2018).

    [44] Y. H. Zhang, T. Senthil. Bridging Hubbard model physics and quantum Hall physics in trilayer graphene/h–BN moiré superlattice. Phys. Rev. B, 99, 205150(2019).

    [45] M. Chen, X. Lin, T. H. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, S. M. Dai. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 19, 1307-1311(2020).

    [46] S. Moore, C. Ciccarino, D. Halbertal, L. McGilly, N. Finney, K. Yao, Y. Shao, G. Ni, A. Sternbach, E. Telford. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun., 12, 5741(2021).

    [47] N. C. Hesp, I. Torre, D. Barcons-Ruiz, H. H. Sheinfux, K. Watanabe, T. Taniguchi, R. K. Kumar, F. H. Koppens. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun., 12, 1640(2021).

    [48] H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 336, 205-209(2011).

    [49] G. Hu, C. W. Qiu, A. Alù. Twistronics for photons: opinion. Opt. Mater. Express, 11, 1377-1382(2021).

    [50] Y. Li, X. Xie, H. Zeng, B. Li, Z. Zhang, S. Wang, J. Liu, D. Shen. Giant Moire trapping of excitons in twisted hBN. Opt. Express, 30, 10596-10604(2021).

    [51] W. J. Kort-Kamp, F. J. Culchac, R. B. Capaz, F. A. Pinheiro. Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 98, 195431(2018).

    [52] X. Chen, X. Fan, L. Li, N. Zhang, Z. Niu, T. Guo, S. Xu, H. Xu, D. Wang, H. Zhang. Moiré engineering of electronic phenomena in correlated oxides. Nat. Phys., 16, 631-635(2020).

    [53] P. Huo, S. Zhang, Y. Liang, Y. Lu, T. Xu. Hyperbolic metamaterials: hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater., 7, 1970054(2019).

    [54] Z. Guo, H. Jiang, H. J. Chen. Hyperbolic metamaterials: from dispersion manipulation to applications. J. Appl. Phys., 127, 071101(2020).

    [55] V. Coello, C. E. Garcia-Ortiz, M. Garcia-Mendez. Classical plasmonics: wave propagation control at subwavelength scale. Nano, 10, 1530005(2015).

    [56] K. Wang, D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376-379(2004).

    [57] J. Pendry, L. Martin-Moreno, F. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [58] Y. Liu, X. Zhang. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett., 103, 141101(2013).

    [59] C. Hu, X. Wu, R. Tong, L. Wang, Y. Huang, S. Wang, B. Hou, W. Wen. A metasurface with bidirectional hyperbolic surface modes and position-sensing applications. NPG Asia Mater., 10, 417-428(2018).

    [60] C. Hu, Z. Li, R. Tong, X. Wu, Z. Xia, L. Wang, S. Li, Y. Huang, S. Wang, B. Hou. Type-II Dirac photons at metasurfaces. Phys. Rev. Lett., 121, 024301(2018).

    [61] Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N.-H. Shen, T. Koschny, C. M. Soukoulis, H. Chen. Hyperbolic spoof plasmonic metasurfaces. NPG Asia Mater., 9, e428(2017).

    [62] Y. Yermakov, A. A. Hurshkainen, D. A. Dobrykh, P. V. Kapitanova, I. V. Iorsh, S. B. Glybovski, A. A. Bogdanov. Experimental observation of hybrid TE-TM polarized surface waves supported by a hyperbolic metasurface. Phys. Rev. B, 98, 195404(2018).

    [63] I. Lifshitz. Anomalies of electron characteristics of a metal in the high pressure region. Phys. JETP, 11, 1130-1135(1960).

    [64] A. Kerelsky, L. J. Mcgilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 572, 95-100(2019).

    [65] W. Zhang, D. Zou, Q. Pei, W. He, H. Sun, X. Zhang. Moiré circuits: engineering magic-angle behavior. Phys. Rev. B, 104, L201408(2021).

    [66] C. Shang, C. Lu, S. Tang, Y. Gao, Z. Wen. Generation of gradient photonic moiré lattice fields. Opt. Express, 29, 29116-29127(2021).

    [67] A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. De Leon, M. D. Lukin, H. Park. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [68] P. Zheng, Q. Xu, X. Su, D. Wang, Y. Xu, X. Zhang, Y. Li, Z. Tian, J. Gu, L. Liu. Anomalous wave propagation in topological transition metasurfaces. Adv. Opt. Mater., 7, 1801483(2019).

    [69] Z. Guo, H. Jiang, H. Chen. Abnormal wave propagation in tilted linear-crossing metamaterials. Adv. Photon. Res., 2, 2000071(2021).

    [70] L. Du, Y. Dai, Z. Sun. Twisting for tunable nonlinear optics. Matter, 3, 987-988(2020).

    [71] J. V. Moloney, A. C. Newell. Nonlinear optics. Physica D, 44, 1-37(1990).

    [72] H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, S. Li. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep., 6, 35692(2016).

    [73] L. Li, P. Zhang, F. Cheng, M. Chang, T. J. Cui. An optically transparent near-field focusing metasurface. IEEE Trans. Microw. Theory, 69, 2015-2027(2021).

    [74] Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, W. Zhang. Efficient flat metasurface lens for terahertz imaging. Opt. Express, 22, 25931-25939(2014).

    [75] L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C.-W. Qiu, T. J. Cui. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [76] D. Smith, S. Schultz, P. Markoš, C. Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B, 65, 195104(2002).

    [77] X. Liu, T. Starr, A. F. Starr, W. J. Padilla. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett., 104, 207403(2010).

    [78] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 70, 016608(2004).

    [79] R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag., 51, 1516-1529(2003).

    [80] M. Cheng, P. Fu, S. Chen. Enhanced and tunable photonic spin Hall effect in metasurface bilayers. J. Opt. Soc. Am. B, 39, 316-323(2022).

    [81] O. V. Kotov, Y. E. Lozovik. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B, 100, 165424(2019).

    [82] H. Hu, X. Lin, L. J. Wong, Q. Yang, D. Liu, B. Zhang, Y. Luo. Surface Dyakonov–Cherenkov radiation. eLight, 2, 2(2022).

    Yi Liu, Chunmei Ouyang, Quan Xu, Xiaoqiang Su, Quanlong Yang, Jiajun Ma, Yanfeng Li, Zhen Tian, Jianqiang Gu, Liyuan Liu, Jiaguang Han, Yunlong Shi, Weili Zhang. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface[J]. Photonics Research, 2022, 10(9): 2056
    Download Citation