- Photonics Research
- Vol. 10, Issue 9, 2056 (2022)
Abstract
1. INTRODUCTION
Recent advances in nanofabrication techniques, such as direct writing [1,2], nanoimprinting [3], lithography [4–6], and assembly approaches [7–11], have promoted the development of moiré metamaterials and metasurfaces, which have enabled numerous distinctive phenomena and unique light–matter interactions. Moiré effects in reciprocal space, existing in bilayer graphene [12–17],
Classical plasmonics aims at exploring the fundamental properties of surface plasmon polaritons (SPPs), which describe the confined electromagnetic wave propagation along the interface between a metal and dielectric [55]. However, because metals can be regarded as perfect electric conductors in the microwave region, the SPPs become weakly confined Zenneck waves and the evanescent fields can extend over several wavelengths [56]. Therefore, structured metals are utilized to overcome the limits, and microwave plasmonics composed of subwavelength metal patterns and dielectric slabs can exhibit unique topological transition and have been widely used to manipulate surface waves [57]. For example, planarized sandwich and dielectric-metal structures can be used to obtain the hyperbolic dispersion in the momentum space by varying the permittivity or the structural parameters [58–62]. Topological transitions only occur at a specific excitation frequency, which greatly limits their applications. Nevertheless, moiré effects can arise when mutual rotation is introduced to a stacked bilayer HMS, inducing hyperbolic-to-elliptic topological transitions in the whole frequency range due to the twist-induced coupling between two adjacent layers. Such a photonic phase transition in the equal-frequency contours (EFCs) is analogous to the Lifshitz transition in electronics [63], and the nondiffraction transmission in photonic systems is similar to the dissipation-free flow of electrons (superconductivity). Therefore, the MHMS experiences a topology change after stacking and twisting, and, at the critical angle where the photon density of states reaches a maximum, the dispersion behaves as a flat line, and the angle is thus referred to as the magic angle [64,65]. The flexibility in designing moiré patterns and the sensitivity to rotation-induced dispersion responses allow for on-demand surface wave modifications. The proposed regime offers a new avenue to break the diffraction limits, applicable to nondivergent diffraction [66], negative diffraction [67], and anomalous wave propagation [68,69].
In this paper, we demonstrate theoretically, numerically, and experimentally moiré topological transitions in a sandwiched metal metasurface consisting of two closely stacked periodic hyperbolic microstructures rotated relative to each other. The photonic responses can be actively controlled by rotating the angle between the two stacked layers, leading to hybridization of the EFCs and moiré effects. To fully investigate the underlying mechanism of the numerous wave features, a Fourier transform is employed to map the corresponding iso-frequency lines controlled by the rotation angles. These unusual moiré phenomena emerge as a result of eigenmode coupling and the MHMS formation, presenting an evolution of dispersion from being hyperbolic to elliptical, which facilitates active engineering of surface waves. Besides, at the magic angles, the number of anti-intersection points
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. SIMULATION AND DISCUSSION
A. Structural Design
As shown in Fig. 1, a moiré structure is formed by stacking two mutually twisted H-shaped periodic HMSs, which consist of a lossless substrate (
Figure 1.Schematic diagram of the designed MHMS, where the structural parameters of a unit cell (inset at the top left) are set as
B. Basic Physical Properties
1. Dispersion Characteristics of the Monolayer Hyperbolic Metasurface
Previous studies are mostly concerned with the tight-binding approximation to express the
Figure 2.Electromagnetic properties of the individual HMS. (a) Normalized transmittance and reflectance spectra when the incident waves are polarized in the
The calculated permittivity is plotted in Fig. 2(f), where the gray areas represent the hyperbolic EFCs
Assuming that the electromagnetic waves propagate in the
2. Dispersion Characteristic of the Bilayer Hyperbolic Metasurface
Since the thickness of the MHMS is much smaller than the wavelength, the bilayer HMS can be treated as a single layer with period
Figure 3.Electromagnetic properties of the proposed bilayer HMS when
As exhibited in Fig. 3, by analyzing the transmittance and reflectance curves under
3. Dispersion Characteristic of the Twisted Bilayer Hyperbolic Metasurface
The MHMS turns to an aperiodic structure when
Figure 4.Electromagnetic properties of the proposed MHMS when
3. MOIRÉ HYPERBOLIC METASURFACE
As presented in Fig. 5(a), a moiré pattern is assembled by two H-shaped bilayer metasurfaces with a subwavelength thickness (total size
Figure 5.Twist-induced topological transition of surface plasmons. (a) Schematic illustration of the proposed MHMS, where the top layer is rotated counterclockwise with respect to the bottom layer. (b) At 5.90 GHz,
With the
To further demonstrate the varying pattern of the magic angle, we summarize the change of the topological transition frequencies with respect to the rotation angles, as illustrated in Fig. 5(d). The black dotted line denotes the magic angles that separate the range of hyperbolic (the blue area,
4. EXPERIMENTAL RESULTS
The experimental sample was composed of two identical H-shaped HMSs with a twisted angle
Figure 6.Top view of the experimental process. A vector network analyzer was employed to generate the excitation signals; the 3D movement platform detected the
Taking into account the symmetry of the electric fields on both sides of the source, we selected the right half of the model (red dotted area) as the fine scanning range, as depicted in Fig. 7(a). Similarly, to experimentally observe the topological transition of the twist-induced surface states, we mapped the
Figure 7.Experimental verifications of SPP propagation in the MHMS. (a) Detail of the measurement process, including the microwave dipole source and the scanning range (red dotted area). (b) At 6.53 GHz, measured
We then summarized the relationship between the magic angle and the frequency in Fig. 7(c); it can be seen that the magic angle changes linearly with frequency, as shown by the black dotted line, and the dispersion is hyperbolic below the line and elliptic above. The magic angle observed at the topological transition point offers a new avenue for engineering light–matter interactions and optical responses. Different from previous methods based on sweeping the topological transition frequencies in different structures, the proposed regime can realize the control of surface states at arbitrary frequencies.
5. CONCLUSION
A new type of sandwiched twisted bilayer metal hyperbolic metasurface is proposed, which enables the steering of electromagnetic responses (the evolution process of the relative permittivity and permeability tensors) and the excitation of magic angle phenomena (drastic dispersion modification) by the relative rotation of the superimposed layer. The designed MHMS can realize topological transitions at arbitrary frequencies rather than a single transition frequency compared with a monolayer counterpart. Besides, Fourier transform of the real space is introduced to study the underlying mechanism of the surface states with the increase of the twist angles. In particular, the fitted curve of the magic angles separating the closed (ellipse) and open (hyperbola) dispersion contours changes linearly with frequency, and the position of the magic angles can be found quantitatively by calculating the number of anti-intersection points between the moiré structure and the distinct layers. Finally, experimental measurements are implemented to verify the interesting twist-induced moiré effects, and the results are in good agreement with the simulations. The proposed MHMS provides a unique way to manipulate light propagation properties and offers new opportunities in designing plasmonic devices, which can be widely used in sensing, imaging, and slow light applications in the microwave region [82].
APPENDIX A: CONDUCTIVITY TENSORS OF THE BILAYER HYPERBOLIC METASURFACE
Assuming that the surface plasmons transmit along the
Figure 8.Schematic diagram of the bilayer hyperbolic metasurface. The coordinate systems of the bottom layer and top layer are set as
APPENDIX B: CONDUCTIVITY TENSORS OF THE TWISTED BILAYER HYPERBOLIC METASURFACE
In order to calculate the conductivity tensors of the twisted bilayer hyperbolic metasurface, the rotation matrix
Figure 9.Schematic diagram of the proposed moiré metasurface. Similar to Fig.
Similarly, a new coordinate system (
APPENDIX C: SIMULATED AND MEASURED FIELD DISTRIBUTIONS AT DIFFERENT MAGIC ANGLES
In order to explain the magic angle curve more clearly, we numerically and experimentally investigated the field distributions at the topological transition frequencies for different mutual rotation angles, as there exist independent self-collimation frequencies at each rotation angle. As shown in Figs.
Figure 10.(a), (b) Simulated and measured
APPENDIX D: SPACER THICKNESS DEPENDENCE OF THE MOIRé STRUCTURE
To further investigate the electromagnetic interaction in the stacked bilayer hyperbolic metasurface, we discuss the spacer thickness dependence of the moiré structure. As shown in Fig.
Figure 11.Tunable dispersion of the bilayer structure by changing the inter-stack distance. (a) Schematic illustration of the bilayer metasurface where the top and bottom layers are separated by
APPENDIX E: DISPERSION PROPERTIES OF THE EXPERIMENTAL SAMPLE AT DIFFERENT MAGIC ANGLES
As depicted in Fig.
Figure 12.Dispersion contours of the measured
References
[1] N. G. Semaltianos, K. Scott, E. G. Wilson. Electron beam lithography of Moiré patterns. Microelectron. Eng., 56, 233-239(2001).
[2] B. Chen, K. Lu. Moire pattern nanopore and nanorod arrays by focused ion beam guided anodization and nanoimprint molding. Langmuir, 27, 4117-4125(2011).
[3] A. Espinha, C. Dore, C. Matricardi, M. I. Alonso, A. R. Goñi, A. Mihi. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photonics, 12, 343-348(2018).
[4] S. M. Lubin, W. Zhou, A. J. Hryn, M. Huntington, T. W. Odom. High-rotational symmetry lattices fabricated by moiré nanolithography. Nano Lett., 12, 4948-4952(2012).
[5] S. Balci, A. Kocabas, C. Kocabas, A. Aydinli. Localization of surface plasmon polaritons in hexagonal arrays of moiré cavities. Appl. Phys. Lett., 98, 031101(2011).
[6] A. Kocabas, S. S. Senlik, A. Aydinli. Slowing down surface plasmons on a moiré surface. Phys. Rev. Lett., 102, 063901(2009).
[7] C. Kai, B. B. Rajeeva, Z. Wu, M. Rukavina, T. D. Dao, S. Ishii, M. Aono, T. Nagao, Y. Zheng. Moirè nanosphere lithography. ACS Nano, 9, 6031-6040(2015).
[8] V. Luchnikov, A. Kondyurin, P. Formanek, H. Lichte, M. Stamm. Moiré patterns in superimposed nanoporous thin films derived from block-copolymer assemblies. Nano Lett., 7, 3628-3632(2007).
[9] C. Jin, B. C. Olsen, E. J. Luber, J. M. Buriak. Preferential alignment of incommensurate block copolymer dot arrays forming Moiré superstructures. ACS Nano, 11, 3237-3246(2017).
[10] A. Singh, C. Dickinson, K. M. Ryan. Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from moiré interference patterns. ACS Nano, 6, 3339-3345(2012).
[11] Y. He, S. H. Ko, T. Ye, A. E. Ribbe, C. Mao. Complexity emerges from lattice overlapping: implications for nanopatterning. Small, 4, 1329-1331(2008).
[12] R. Bistritzer, A. H. Macdonald. Moire bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 108, 12233-12237(2011).
[13] S. Sunku, G. Ni, B.-Y. Jiang, H. Yoo, A. Sternbach, A. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. J. Watanabe. Photonic crystals for nano-light in moiré graphene superlattices. Science, 362, 1153-1156(2018).
[14] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi. Signatures of tunable superconductivity in a trilayer graphene moire superlattice. Nature, 572, 215-219(2019).
[15] C. Mora, N. Regnault, B. A. Bernevig. Flatbands and perfect metal in trilayer moiré graphene. Phys. Rev. Lett., 123, 026402(2019).
[16] G. X. Ni, H. Wang, J. S. Wu, Z. Fei, M. Goldflam, F. Keilmann, B. Özyilmaz, A. C. Neto, X. M. Xie, M. M. Fogler. Plasmons in graphene moiré superlattices. Nat. Mater., 14, 1217-1222(2015).
[17] H. Z. Zhang, H. Y. Qin, W. X. Zhang, L. Huang, X. D. Zhang. Moiré graphene nanoribbons: nearly perfect absorptions and highly efficient reflections with wide angles. Opt. Express, 30, 2219-2229(2022).
[18] Q. Zhang, Q. Ou, G. Hu, J. Liu, Z. Dai, M. S. Fuhrer, Q. Bao, C.-W. Qiu. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett., 21, 3112-3119(2021).
[19] G. Hu, Q. Ou, G. Si, Y. Wu, A. Alù. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).
[20] K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. Quan, A. Singh. Evidence for moiré excitons in van der Waals heterostructures. Nature, 567, 71-75(2019).
[21] N. Leconte, J. Jung, S. Lebègue, T. Gould. Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation. Phys. Rev. B, 96, 195431(2017).
[22] E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 567, 81-86(2019).
[23] G. Hu, J. Shen, C. W. Qiu, A. Alù, S. Dai. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater., 8, 1901393(2020).
[24] F. He, Y. Zhou, Z. Ye, S.-H. Cho, J. Jeong, X. Meng, Y. Wang. Moiré patterns in 2D materials: a review. ACS Nano, 15, 5944-5958(2021).
[25] H. N. Barad, H. Kwon, M. Alarcón-Correa, P. Fischer. Large area patterning of nanoparticles and nanostructures: current status and future prospects. ACS Nano, 15, 5861-5875(2021).
[26] S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, Y. Arakawa. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal. Appl. Phys. Lett., 105, 051107(2014).
[27] J. Lee, C. T. Chan. Circularly polarized thermal radiation from layer-by-layer photonic crystal structures. Appl. Phys. Lett., 90, 051912(2007).
[28] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, C. R. Dean. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059-1064(2019).
[29] Y. Cao, V. Fa Temi, S. Fa Ng, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).
[30] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 574, 653-657(2019).
[31] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, D. Goldhaber-Gordon. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365, 605-608(2019).
[32] C. Repellin, Z. Dong, Y. H. Zhang, T. Senthil. Ferromagnetism in narrow bands of moiré superlattices. Phys. Rev. Lett., 124, 187601(2020).
[33] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 579, 56-61(2020).
[34] C. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, Y. Zhang, K. Watanabe, T. Taniguchi, M. Huber. Imaging orbital ferromagnetism in a moiré Chern insulator. Science, 372, 1323-1327(2021).
[35] X. C. Wu, A. Keselman, C.-M. Jian, K. A. Pawlak, C. Xu. Ferromagnetism and spin-valley liquid states in moiré correlated insulators. Phys. Rev. B, 100, 024421(2019).
[36] G. Hu, A. Krasnok, Y. Mazor, C. W. Qiu, A. Alù. Moiré hyperbolic metasurfaces. Nano Lett., 20, 3217-3224(2020).
[37] Q. Zhang, G. Hu, W. Ma, P. Li, A. Krasnok, R. Hillenbrand, A. Alù, C. W. Qiu. Interface nano-optics with van der Waals polaritons. Nature, 597, 187-195(2021).
[38] G. Hu, C. Zheng, J. Ni, C. W. Qiu, A. Alù. Enhanced light-matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett., 118, 211101(2021).
[39] G. Hu, M. Wang, Y. Mazor, C. W. Qiu, A. Alù. Tailoring light with layered and moiré metasurfaces. Trends Chem., 3, 342-358(2021).
[40] Z. Wu, Y. Zheng. Moiré chiral metamaterials. Adv. Opt. Mater., 5, 1700034(2017).
[41] Z. Wu, Y. Zheng. Moiré metamaterials and metasurfaces. Adv. Opt. Mater., 6, 1701057(2018).
[42] P. Lodahl, S. Mahmoodian, S. Stobbe, P. Schneeweiss, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).
[43] M. Yankowitz, J. Jung, E. Laksono, N. Leconte, B. L. Chittari, K. Watanabe, T. Taniguchi, S. Adam, D. Graf, C. R. Dean. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature, 557, 404-408(2018).
[44] Y. H. Zhang, T. Senthil. Bridging Hubbard model physics and quantum Hall physics in trilayer graphene/h–BN moiré superlattice. Phys. Rev. B, 99, 205150(2019).
[45] M. Chen, X. Lin, T. H. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, S. M. Dai. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 19, 1307-1311(2020).
[46] S. Moore, C. Ciccarino, D. Halbertal, L. McGilly, N. Finney, K. Yao, Y. Shao, G. Ni, A. Sternbach, E. Telford. Nanoscale lattice dynamics in hexagonal boron nitride moiré superlattices. Nat. Commun., 12, 5741(2021).
[47] N. C. Hesp, I. Torre, D. Barcons-Ruiz, H. H. Sheinfux, K. Watanabe, T. Taniguchi, R. K. Kumar, F. H. Koppens. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun., 12, 1640(2021).
[48] H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 336, 205-209(2011).
[49] G. Hu, C. W. Qiu, A. Alù. Twistronics for photons: opinion. Opt. Mater. Express, 11, 1377-1382(2021).
[50] Y. Li, X. Xie, H. Zeng, B. Li, Z. Zhang, S. Wang, J. Liu, D. Shen. Giant Moire trapping of excitons in twisted hBN. Opt. Express, 30, 10596-10604(2021).
[51] W. J. Kort-Kamp, F. J. Culchac, R. B. Capaz, F. A. Pinheiro. Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 98, 195431(2018).
[52] X. Chen, X. Fan, L. Li, N. Zhang, Z. Niu, T. Guo, S. Xu, H. Xu, D. Wang, H. Zhang. Moiré engineering of electronic phenomena in correlated oxides. Nat. Phys., 16, 631-635(2020).
[53] P. Huo, S. Zhang, Y. Liang, Y. Lu, T. Xu. Hyperbolic metamaterials: hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater., 7, 1970054(2019).
[54] Z. Guo, H. Jiang, H. J. Chen. Hyperbolic metamaterials: from dispersion manipulation to applications. J. Appl. Phys., 127, 071101(2020).
[55] V. Coello, C. E. Garcia-Ortiz, M. Garcia-Mendez. Classical plasmonics: wave propagation control at subwavelength scale. Nano, 10, 1530005(2015).
[56] K. Wang, D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376-379(2004).
[57] J. Pendry, L. Martin-Moreno, F. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).
[58] Y. Liu, X. Zhang. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett., 103, 141101(2013).
[59] C. Hu, X. Wu, R. Tong, L. Wang, Y. Huang, S. Wang, B. Hou, W. Wen. A metasurface with bidirectional hyperbolic surface modes and position-sensing applications. NPG Asia Mater., 10, 417-428(2018).
[60] C. Hu, Z. Li, R. Tong, X. Wu, Z. Xia, L. Wang, S. Li, Y. Huang, S. Wang, B. Hou. Type-II Dirac photons at metasurfaces. Phys. Rev. Lett., 121, 024301(2018).
[61] Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N.-H. Shen, T. Koschny, C. M. Soukoulis, H. Chen. Hyperbolic spoof plasmonic metasurfaces. NPG Asia Mater., 9, e428(2017).
[62] Y. Yermakov, A. A. Hurshkainen, D. A. Dobrykh, P. V. Kapitanova, I. V. Iorsh, S. B. Glybovski, A. A. Bogdanov. Experimental observation of hybrid TE-TM polarized surface waves supported by a hyperbolic metasurface. Phys. Rev. B, 98, 195404(2018).
[63] I. Lifshitz. Anomalies of electron characteristics of a metal in the high pressure region. Phys. JETP, 11, 1130-1135(1960).
[64] A. Kerelsky, L. J. Mcgilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 572, 95-100(2019).
[65] W. Zhang, D. Zou, Q. Pei, W. He, H. Sun, X. Zhang. Moiré circuits: engineering magic-angle behavior. Phys. Rev. B, 104, L201408(2021).
[66] C. Shang, C. Lu, S. Tang, Y. Gao, Z. Wen. Generation of gradient photonic moiré lattice fields. Opt. Express, 29, 29116-29127(2021).
[67] A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. De Leon, M. D. Lukin, H. Park. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).
[68] P. Zheng, Q. Xu, X. Su, D. Wang, Y. Xu, X. Zhang, Y. Li, Z. Tian, J. Gu, L. Liu. Anomalous wave propagation in topological transition metasurfaces. Adv. Opt. Mater., 7, 1801483(2019).
[69] Z. Guo, H. Jiang, H. Chen. Abnormal wave propagation in tilted linear-crossing metamaterials. Adv. Photon. Res., 2, 2000071(2021).
[70] L. Du, Y. Dai, Z. Sun. Twisting for tunable nonlinear optics. Matter, 3, 987-988(2020).
[71] J. V. Moloney, A. C. Newell. Nonlinear optics. Physica D, 44, 1-37(1990).
[72] H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, S. Li. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep., 6, 35692(2016).
[73] L. Li, P. Zhang, F. Cheng, M. Chang, T. J. Cui. An optically transparent near-field focusing metasurface. IEEE Trans. Microw. Theory, 69, 2015-2027(2021).
[74] Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, W. Zhang. Efficient flat metasurface lens for terahertz imaging. Opt. Express, 22, 25931-25939(2014).
[75] L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C.-W. Qiu, T. J. Cui. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).
[76] D. Smith, S. Schultz, P. Markoš, C. Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B, 65, 195104(2002).
[77] X. Liu, T. Starr, A. F. Starr, W. J. Padilla. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett., 104, 207403(2010).
[78] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 70, 016608(2004).
[79] R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag., 51, 1516-1529(2003).
[80] M. Cheng, P. Fu, S. Chen. Enhanced and tunable photonic spin Hall effect in metasurface bilayers. J. Opt. Soc. Am. B, 39, 316-323(2022).
[81] O. V. Kotov, Y. E. Lozovik. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B, 100, 165424(2019).
[82] H. Hu, X. Lin, L. J. Wong, Q. Yang, D. Liu, B. Zhang, Y. Luo. Surface Dyakonov–Cherenkov radiation. eLight, 2, 2(2022).

Set citation alerts for the article
Please enter your email address