• Photonics Research
  • Vol. 9, Issue 12, 2398 (2021)
Angela I. Barreda1、2、3, Mario Zapata-Herrera4、5, Isabelle M. Palstra6、7, Laura Mercadé3, Javier Aizpurua4、5, A. Femius Koenderink6、7, and Alejandro Martínez3、*
Author Affiliations
  • 1Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany
  • 2Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
  • 3Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
  • 4Materials Physics Center CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Spain
  • 5Donostia International Physics Center DIPC, 20018 Donostia-San Sebastian, Spain
  • 6Center for Nanophotonics, AMOLF, 1098 XG Amsterdam, The Netherlands
  • 7Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
  • show less
    DOI: 10.1364/PRJ.433761 Cite this Article Set citation alerts
    Angela I. Barreda, Mario Zapata-Herrera, Isabelle M. Palstra, Laura Mercadé, Javier Aizpurua, A. Femius Koenderink, Alejandro Martínez. Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration[J]. Photonics Research, 2021, 9(12): 2398 Copy Citation Text show less
    References

    [1] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 681(1946).

    [2] A. F. Koenderink. On the use of Purcell factors for plasmon antennas. Opt. Lett., 35, 4208-4210(2010).

    [3] X. Zambrana-Puyalto, N. Bonod. Purcell factor of spherical Mie resonators. Phys. Rev. B, 91, 195422(2015).

    [4] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [5] R. Sprik, B. A. van Tiggelen, A. Lagendijk. Optical emission in periodic dielectrics. Europhys. Lett., 35, 265-270(1996).

    [6] T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, S. Noda. Photonic crystal nanocavity with a Q factor exceeding eleven million. Opt. Express, 25, 1769-1777(2017).

    [7] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [8] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [9] F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs, R. Esteban, J. Aizpurua, J. J. Baumberg. Single-molecule optomechanics in ‘picocavities’. Science, 354, 726-729(2016).

    [10] H. M. Doeleman, E. Verhagen, A. F. Koenderink. Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth. ACS Photon., 3, 1943-1951(2016).

    [11] G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, M. H. Mikkelsen. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics, 8, 835-840(2014).

    [12] I. Mukherjee, G. Hajisalem, R. Gordon. One-step integration of metal nanoparticle in photonic crystal nanobeam cavity. Opt. Express, 19, 22462-22469(2011).

    [13] M. Kamandar Dezfouli, R. Gordon, S. Hughes. Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system. Phys. Rev. A, 95, 013846(2017).

    [14] I. Mukherjee, R. Gordon. Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory. Opt. Express, 20, 16992-17000(2012).

    [15] M. K. Dezfouli, R. Gordon, S. Hughes. Molecular optomechanics in the anharmonic cavity QED regime using hybrid metal-dielectic cavity modes. ACS Photon., 6, 1400-1408(2019).

    [16] I. M. Palstra, H. M. Doeleman, A. F. Koenderink. Hybrid cavity-antenna systems for quantumoptics outside the cryostat?. Nanophotonics, 8, 1513-1531(2019).

    [17] H. M. Doeleman, C. D. Dieleman, C. Mennes, B. Ehler, A. F. Koenderink. Observation of cooperative Purcell enhancements in antenna-cavity hybrids. ACS Nano, 14, 12027-12036(2020).

    [18] H. Zhang, Y.-C. Liu, C. Wang, N. Zhang, C. Lu. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V. Opt. Lett., 45, 4797(2020).

    [19] E. Arbabi, S. M. Kamali, S. Arnold, L. L. Goddard. Hybrid whispering gallery mode/plasmonic chain ring resonators for biosensing. Appl. Phys. Lett., 105, 231107(2014).

    [20] Y. Hong, W. Ahn, S. V. Boriskina, X. Zhao, B. M. Reinhard. Directed assembly of optoplasmonic hybrid materials with tunable photonic–plasmonic properties. J. Phys. Chem. Lett., 6, 2056-2064(2015).

    [21] C. Klusmann, R. N. S. Suryadharma, J. Oppermann, C. Rockstuhl, H. Kalt. Hybridizing whispering gallery modes and plasmonic resonances in a photonic metadevice for biosensing applications. J. Opt. Soc. Am. B, 34, D46-D55(2017).

    [22] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett., 78, 1667-1670(1997).

    [23] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 8, 908-918(2014).

    [24] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [25] S. Franke, M. Richter, J. Ren, A. Knorr, S. Hughes. Quantized quasinormal-mode description of nonlinear cavity-QED effects from coupled resonators with a Fano-like resonance. Phys. Rev. Res., 2, 033456(2020).

    [26] F. Peyskens, A. Dhakal, P. V. Dorpe, N. L. Thomas, R. Baets. Surface enhanced Raman spectroscopy using a single mode nanophotonic plasmonic platform. ACS Photon., 3, 102-108(2016).

    [27] J. Losada, A. Raza, S. Clemmen, A. Serrano, A. Griol, R. Baets, A. Martínez. SERS detection via individual bowtie nanoantennas integrated in Si3N4 waveguides. IEEE J. Sel. Top. Quantum Electron., 25, 4600806(2019).

    [28] Y. Bian, Q. Gong. Bow-tie hybrid plasmonic waveguides. J. Lightwave Technol., 32, 4504-4509(2014).

    [29] W.-C. Yue, P.-J. Yao, L.-X. Xu, H. Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement. Front. Phys., 13, 134207(2018).

    [30] I. A. Pita, M. Kumbham, M. Schmidt, M. Gleeson, K. M. Ryan, C. Silien, N. Liu. Surface plasmon propagation enhancement via bowtie antenna incorporation in Au-mica block waveguides. Appl. Opt., 57, E50-E56(2018).

    [31] A. Astorino, J. Lægsgaard, K. Rottwitt. The bowtie effect in cylindrical waveguides. J. Lightwave Technol., 36, 3309-3317(2018).

    [32] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett., 10, 4952-4955(2010).

    [33] W. Zhu, K. B. Crozier. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun., 5, 5228(2014).

    [34] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, J. K. W. Yang. Nanoplasmonics: classical down to the nanometer scale. Nano Lett., 12, 1683-1689(2012).

    [35] G. Lévêque, O. J. F. Martin. Optical interactions in a plasmonic particle coupled to a metallic film. Opt. Express, 14, 9971-9981(2006).

    [36] C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072-1074(2012).

    [37] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, D. R. Smith. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668-678(2019).

    [38] C. Carnegie, J. Griffiths, B. de Nijs, C. Readman, R. Chikkaraddy, W. M. Deacon, Y. Zhang, I. Szabó, E. Rosta, J. Aizpurua, J. J. Baumberg. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett., 9, 7146-7151(2018).

    [39] M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, D. Sánchez-Portal. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett., 15, 3410-3419(2015).

    [40] Y. Zhang, M. W. McCutcheon, I. B. Burgess, M. Lončar. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities. Opt. Lett., 34, 2694-2696(2009).

    [41] M. W. McCutcheon, P. B. Deotare, Y. Zhang, M. Lončar. High-Q-transverse-electric/transverse magnetic photonic crystal nanobeam cavities. Appl. Phys. Lett., 98, 111117(2011).

    [42] S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski. Guided modes in photonic crystal slabs. Phys. Rev. B, 60, 5751-5758(1999).

    [43] Y. Pennec, B. D. Rouhani, E. H. E. Boudouti, C. Li, Y. E. Hassouani, J. O. Vasseur, N. Papanikolaou, S. Benchabane, V. Laude, A. Martinez. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Opt. Express, 18, 14301-14310(2010).

    [44] S.-G. Lee, R. Magnusson. Essential differences between TE and TM band gaps in periodic films at the first Bragg condition. Opt. Lett., 44, 4658-4661(2019).

    [45] D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, P. Seidler. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [46] R. Stockill, M. Forsch, G. Beaudoin, K. Pantzas, I. Sagnes, R. Braive, S. Gröblacher. Gallium phosphide as a piezoelectric platform for quantum optomechanics. Phys. Rev. Lett., 123, 163602(2019).

    [47] COMSOL Multiphysics 5.0.

    [48] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [49] W. L. Barnes, S. A. R. Horsley, W. L. Vos. Classical antennas, quantum emitters, and densities of optical states. J. Opt., 22, 073501(2020).

    [50] A. Xomalis, R. Chikkaraddy, E. Oksenberg, I. Shlesinger, J. Huang, E. C. Garnett, A. F. Koenderink, J. J. Baumberg. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities. ACS Nano, 14, 10562-10568(2020).

    [51] R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, J. G. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [52] L. Zhao, K. L. Kelly, G. C. Schatz. The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B, 107, 7343-7350(2003).

    [53] R. Waldron. Perturbation theory of resonant cavities. Proc. IEE C, 107, 272-274(1960).

    [54] O. Klein, S. Donovan, M. Dressel, G. Grüner. Microwave cavity perturbation technique: Part I: principles. Int. J. Infrared Millim. Waves, 14, 2423-2457(1993).

    [55] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 5, 591-596(2008).

    [56] A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar. Controlling the resonance of a photonic crystal microcavity by a near-field probe. Phys. Rev. Lett., 95, 153904(2005).

    [57] F. Ruesink, H. M. Doeleman, R. Hendrikx, A. F. Koenderink, E. Verhagen. Perturbing open cavities: anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system. Phys. Rev. Lett., 115, 203904(2015).

    [58] J. Yang, H. Giessen, P. Lalanne. Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. Nano Lett., 15, 3439-3444(2015).

    [59] T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, E. Muljarov. From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing. Phys. Rev. Lett., 116, 237401(2016).

    [60] K. G. Cognée, H. M. Doeleman, P. Lalanne, A. F. Koenderink. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light Sci. Appl., 8, 115(2019).

    [61] H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill. Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets. Phys. Rev. A, 41, 5187-5198(1990).

    [62] P. T. Kristensen, J. R. de Lasson, N. Gregersen. Calculation, normalization, and perturbation of quasinormal modes in coupled cavity-waveguide systems. Opt. Lett., 39, 6359-6362(2014).

    [63] P. Lalanne, W. Yan, K. Vynck, C. Sauvan, J.-P. Hugonin. Light interaction with photonic and plasmonic resonances. Laser Photon. Rev., 12, 1700113(2018).

    [64] F. J. Rodrguez-Fortuño, A. Espinosa-Soria, A. Martnez. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. J. Opt., 18, 123001(2016).

    [65] M. Frimmer, A. F. Koenderink. Superemitters in hybrid photonic systems: a simple lumping rule for the local density of optical states and its breakdown at the unitary limit. Phys. Rev. B, 86, 235428(2012).

    [66] B. Gurlek, V. Sandoghdar, D. Martín-Cano. Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photon., 5, 456-461(2018).

    [67] M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, O. Benson. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett., 10, 891-895(2010).

    [68] J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, J. K. W. Yang. Highly directive hybrid metal–dielectric yagi-uda nanoantennas. ACS Nano, 12, 8616-8624(2018).

    [69] E. Rusak, I. Staude, M. Decker, J. Sautter, A. E. Miroshnichenko, D. A. Powell, D. N. Neshev, Y. S. Kivshar. Hybrid nanoantennas for directional emission enhancement. Appl. Phys. Lett., 105, 221109(2014).

    CLP Journals

    [1] Jie Zheng, Jinfeng Zhu, Zhilin Yang. Extremely narrow resonant linewidths in metal-dielectric heterostructures[J]. Photonics Research, 2022, 10(7): 1754

    Angela I. Barreda, Mario Zapata-Herrera, Isabelle M. Palstra, Laura Mercadé, Javier Aizpurua, A. Femius Koenderink, Alejandro Martínez. Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration[J]. Photonics Research, 2021, 9(12): 2398
    Download Citation