• Acta Optica Sinica
  • Vol. 43, Issue 8, 0822010 (2023)
Fanqi Shen, Lin Yang, Rengmao Wu*, Zhenrong Zheng, Haifeng Li, and Xu Liu
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    DOI: 10.3788/AOS221831 Cite this Article Set citation alerts
    Fanqi Shen, Lin Yang, Rengmao Wu, Zhenrong Zheng, Haifeng Li, Xu Liu. Research Progress on Monge-Ampère Equation Method for Designing Freeform Beam-Shaping Optics[J]. Acta Optica Sinica, 2023, 43(8): 0822010 Copy Citation Text show less
    References

    [1] Reimers J, Bauer A, Thompson K P et al. Freeform spectrometer enabling increased compactness[J]. Light: Science & Applications, 6, e17026(2017).

    [2] Lee X H, Moreno I, Sun C C. High-performance LED street lighting using microlens arrays[J]. Optics Express, 21, 10612-10621(2013).

    [3] Moreno I, Avendaño-Alejo M, Saucedo-A T et al. Modeling LED street lighting[J]. Applied Optics, 53, 4420-4430(2014).

    [4] Wu R M, Li K, Liu P et al. Conceptual design of dedicated road lighting for city park and housing estate[J]. Applied Optics, 52, 5272-5278(2013).

    [5] Zhu Z B, Wei S, Liu R et al. Freeform surface design for high-efficient LED low-beam headlamp lens[J]. Optics Communications, 477, 126269(2020).

    [6] Ge P, Li Y, Chen Z J et al. LED high-beam headlamp based on free-form microlenses[J]. Applied Optics, 53, 5570-5575(2014).

    [7] Ge P, Zhang K, Mao L et al. An off-axis, reflective system for uniform near-field illumination in optical microscopy[J]. Lighting Research & Technology, 50, 787-795(2018).

    [8] Taege Y, Schulz S L, Messerschmidt B et al. A miniaturized illumination unit for airy light-sheet microscopy using 3D-printed freeform optics[C], IW3C.1(2022).

    [9] Jin Y H, Hassan A, Jiang Y J. Freeform microlens array homogenizer for excimer laser beam shaping[J]. Optics Express, 24, 24846-24858(2016).

    [10] Feng Z X, Froese B D, Liang R G et al. Simplified freeform optics design for complicated laser beam shaping[J]. Applied Optics, 56, 9308-9314(2017).

    [11] Mao X L, Li J P, Wang F B et al. Fast design method of smooth freeform lens with an arbitrary aperture for collimated beam shaping[J]. Applied Optics, 58, 2512-2521(2019).

    [12] Schmidt S, Thiele S, Toulouse A et al. Tailored micro-optical freeform holograms for integrated complex beam shaping[J]. Optica, 7, 1279-1286(2020).

    [13] Wu R M, Liu P, Zhang Y Q et al. A mathematical model of the single freeform surface design for collimated beam shaping[J]. Optics Express, 21, 20974-20989(2013).

    [14] Wu R M, Feng Z X, Zheng Z R et al. Design of freeform illumination optics[J]. Laser & Photonics Reviews, 12, 1700310(2018).

    [15] Shatz N E, Bortz J C, Kirkpatrick D et al. Optimal design of a nonimaging projection lens for use with an RF-powered source and a rectangular target[J]. Proceedings of SPIE, 4446, 171-184(2001).

    [16] Bortz J C, Shatz N E, Keuper M. Optimal design of a nonimaging TIR doublet lens for an illumination system using an LED source[J]. Proceedings of SPIE, 5529, 8-16(2004).

    [17] Davenport T L R, Hough T A, Cassarly W J. Optimization for illumination systems: the next level of design[J]. Proceedings of SPIE, 5456, 81-90(2004).

    [18] Koshel R J. Simplex optimization method for illumination design[J]. Optics Letters, 30, 649-651(2005).

    [19] Fournier F, Rolland J. Optimization of freeform lightpipes for light-emitting-diode projectors[J]. Applied Optics, 47, 957-966(2008).

    [20] Liu Z J, Liu P, Yu F H. Parametric optimization method for the design of high-efficiency free-form illumination system with a LED source[J]. Chinese Optics Letters, 10, 112201(2012).

    [21] Hsieh C C, Li Y H, Hung C C. Modular design of the LED vehicle projector headlamp system[J]. Applied Optics, 52, 5221-5229(2013).

    [22] Wang K, Han Y J, Li H T et al. Overlapping-based optical freeform surface construction for extended lighting source[J]. Optics Express, 21, 19750-19761(2013).

    [23] Wu R M, Wang H, Liu P et al. Efficient optimal design of smooth optical freeform surfaces using ray targeting[J]. Optics Communications, 300, 100-107(2013).

    [24] Zhao S, Wang K, Chen F et al. Integral freeform illumination lens design of LED based pico-projector[J]. Applied Optics, 52, 2985-2993(2013).

    [25] Birch D A, Brand M. Design of freeforms to uniformly illuminate polygonal targets from extended sources via edge ray mapping[J]. Applied Optics, 59, 6490-6496(2020).

    [26] Byzov E V, Kravchenko S V, Moiseev M A et al. Optimization method for designing double-surface refractive optical elements for an extended light source[J]. Optics Express, 28, 24431-24443(2020).

    [27] Völl A, Berens M, Wester R et al. Freeform optics design for extended sources in paraxial approximation exploiting the expectation maximization algorithm[J]. Optics Express, 28, 37004-37014(2020).

    [28] Li Y Y, Feng Z X, Cheng D W et al. Designing double freeform surfaces for large ray bending irradiance tailoring of extended LED sources[J]. Optics Express, 29, 13469-13485(2021).

    [29] Zhu Z B, Wei S L, Fan Z C et al. Freeform illumination optics design for extended LED sources through a localized surface control method[J]. Optics Express, 30, 11524-11535(2022).

    [30] Feng Z X, Luo Y, Han Y J. Design of LED freeform optical system for road lighting with high luminance/illuminance ratio[J]. Optics Express, 18, 22020-22031(2010).

    [31] Luo Y, Feng Z X, Han Y J et al. Design of compact and smooth free-form optical system with uniform illuminance for LED source[J]. Optics Express, 18, 9055-9063(2010).

    [32] Wang K, Chen F, Liu Z Y et al. Design of compact freeform lens for application specific light-emitting diode packaging[J]. Optics Express, 18, 413-425(2010).

    [33] Kim B, Kim H, Kang S. Reverse functional design of discontinuous refractive optics using an extended light source for flat illuminance distributions and high color uniformity[J]. Optics Express, 19, 1794-1807(2011).

    [34] Luo X X, Liu H, Lu Z W et al. Automated optimization of an aspheric light-emitting diode lens for uniform illumination[J]. Applied Optics, 50, 3412-3418(2011).

    [35] Situ W C, Han Y J, Li H T et al. Combined feedback method for designing a free-form optical system with complicated illumination patterns for an extended LED source[J]. Optics Express, 19, A1022-A1030(2011).

    [36] Li H T, Chen S C, Han Y J et al. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency[J]. Optics Express, 21, 1258-1269(2013).

    [37] Mao X L, Li H T, Han Y J et al. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source[J]. Optics Express, 22, A1491-A1506(2014).

    [38] Wester R, Müller G, Völl A et al. Designing optical free-form surfaces for extended sources[J]. Optics Express, 22, A552-A560(2014).

    [39] Mao X L, Li H T, Han Y J et al. Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape[J]. Optics Express, 23, 4313-4328(2015).

    [40] Wu H, Zhang X M, Ge P. Design method of a light emitting diode front fog lamp based on a freeform reflector[J]. Optics & Laser Technology, 72, 125-133(2015).

    [41] Wu H, Zhang X M, Ge P. Double freeform surfaces lens design for LED uniform illumination with high distance-height ratio[J]. Optics & Laser Technology, 73, 166-172(2015).

    [42] Wei S L, Zhu Z B, Li W Y et al. Compact freeform illumination optics design by deblurring the response of extended sources[J]. Optics Letters, 46, 2770-2773(2021).

    [43] Moreno I, Sun C C. LED array: where does far-field begin?[J]. Proceedings of SPIE, 7058, 70580R(2008).

    [44] Wang L, Qian K Y, Luo Y. Discontinuous free-form lens design for prescribed irradiance[J]. Applied Optics, 46, 3716-3723(2007).

    [45] Ding Y, Liu X, Zheng Z R et al. Freeform LED lens for uniform illumination[J]. Optics Express, 16, 12958-12966(2008).

    [46] Wang K, Liu S, Chen F et al. Freeform LED lens for rectangularly prescribed illumination[J]. Journal of Optics A, 11, 105501(2009).

    [47] Zheng Z R, Hao X, Liu X. Freeform surface lens for LED uniform illumination[J]. Applied Optics, 48, 6627-6634(2009).

    [48] Wu R M, Li H F, Zheng Z R et al. Freeform lens arrays for off-axis illumination in an optical lithography system[J]. Applied Optics, 50, 725-732(2011).

    [49] Bäuerle A, Bruneton A, Wester R et al. Algorithm for irradiance tailoring using multiple freeform optical surfaces[J]. Optics Express, 20, 14477-14485(2012).

    [50] Bruneton A, Bäuerle A, Wester R et al. Limitations of the ray mapping approach in freeform optics design[J]. Optics Letters, 38, 1945-1947(2013).

    [51] Feng Z X, Huang L, Gong M L et al. Beam shaping system design using double freeform optical surfaces[J]. Optics Express, 21, 14728-14735(2013).

    [52] Feng Z X, Huang L, Jin G F et al. Designing double freeform optical surfaces for controlling both irradiance and wavefront[J]. Optics Express, 21, 28693-28701(2013).

    [53] Ma D L, Feng Z X, Liang R G. Tailoring freeform illumination optics in a double-pole coordinate system[J]. Applied Optics, 54, 2395-2399(2015).

    [54] Ma D L, Feng Z X, Liang R G. Freeform illumination lens design using composite ray mapping[J]. Applied Optics, 54, 498-503(2015).

    [55] Bösel C, Gross H. Ray mapping approach for the efficient design of continuous freeform surfaces[J]. Optics Express, 24, 14271-14282(2016).

    [56] Feng Z X, Froese B D, Liang R G. Freeform illumination optics construction following an optimal transport map[J]. Applied Optics, 55, 4301-4306(2016).

    [57] Bösel C, Worku N G, Gross H. Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation[J]. Applied Optics, 56, 3679-3688(2017).

    [58] Desnijder K, Hanselaer P, Meuret Y. Flexible design method for freeform lenses with an arbitrary lens contour[J]. Optics Letters, 42, 5238-5241(2017).

    [59] Gannon C, Liang R G. Ray mapping with surface information for freeform illumination design[J]. Optics Express, 25, 9426-9434(2017).

    [60] Mao X L, Xu S B, Hu X R et al. Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping[J]. Applied Optics, 56, 6324-6331(2017).

    [61] Zhu Z B, Yuan X H, Liang R G et al. Free-form surface generation in a double pole coordinate system for off-axis illumination application[J]. Applied Optics, 56, 771-776(2017).

    [62] Bösel C, Gross H. Double freeform illumination design for prescribed wavefronts and irradiances[J]. Journal of the Optical Society of America A, 35, 236-243(2018).

    [63] Zhu Z B, Ma D L, Hu Q M et al. Catadioptric freeform optical system design for LED off-axis road illumination applications[J]. Optics Express, 26, A54-A65(2018).

    [64] Wei S L, Zhu Z B, Fan Z C et al. Least-squares ray mapping method for freeform illumination optics design[J]. Optics Express, 28, 3811-3822(2020).

    [65] Zhu Z B, Wei S L, Li W Y et al. Freeform illumination optics for 3D targets through a virtual irradiance transport[J]. Optics Express, 29, 15382-15392(2021).

    [66] Schruben J S. Formulation of a reflector-design problem for a lighting fixture[J]. Journal of the Optical Society of America, 62, 1498-1501(1972).

    [67] Ries H, Muschaweck J. Tailored freeform optical surfaces[J]. Journal of the Optical Society of America A, 19, 590-595(2002).

    [68] Wu R M, Xu L, Liu P et al. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation[J]. Optics Letters, 38, 229-231(2013).

    [69] Wu R M, Benítez P, Zhang Y Q et al. Influence of the characteristics of a light source and target on the Monge-Ampére equation method in freeform optics design[J]. Optics Letters, 39, 634-637(2014).

    [70] Wu R M, Zhang Y Q, Sulman M M et al. Initial design with L2 Monge-Kantorovich theory for the Monge-Ampère equation method in freeform surface illumination design[J]. Optics Express, 22, 16161-16177(2014).

    [71] Zhang Y Q, Wu R, Liu P et al. Double freeform surfaces design for laser beam shaping with Monge-Ampère equation method[J]. Optics Communications, 331, 297-305(2014).

    [72] Brix K, Hafizogullari Y, Platen A. Designing illumination lenses and mirrors by the numerical solution of Monge-Ampère equations[J]. Journal of the Optical Society of America A, 32, 2227-2236(2015).

    [73] Brix K, Hafizogullari Y, Platen A. Solving the Monge-Ampère equations for the inverse reflector problem[J]. Mathematical Models and Methods in Applied Sciences, 25, 803-837(2015).

    [74] Chang S Q, Wu R M, An L et al. Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a Monge-Ampère type equation[J]. Journal of Optics, 18, 125602(2016).

    [75] Wu R M, Chang S Q, Zheng Z R et al. Formulating the design of two freeform lens surfaces for point-like light sources[J]. Optics Letters, 43, 1619-1622(2018).

    [76] Feng Z X, Cheng D W, Wang Y T. Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance[J]. Optics Letters, 44, 2274-2277(2019).

    [77] Wu R M, Yang L, Ding Z H et al. Precise light control in highly tilted geometry by freeform illumination optics[J]. Optics Letters, 44, 2887-2890(2019).

    [78] Yang L, Liu Y, Ding Z et al. Design of freeform lenses for illuminating hard-to-reach areas through a light-guiding system[J]. Optics Express, 28, 38155-38168(2020).

    [79] Shen F Q, Yang L, Hu G Y et al. Freeform and precise irradiance tailoring in arbitrarily oriented planes[J]. Optics Express, 29, 42844-42854(2021).

    [80] Yang L, Shen F Q, Ding Z H et al. Freeform optical design of beam shaping systems with variable illumination properties[J]. Optics Express, 29, 31993-32005(2021).

    [81] Feng Z X, Cheng D W, Wang Y T. Iterative freeform lens design for optical field control[J]. Photonics Research, 9, 1775-1783(2021).

    [82] Glimm T, Oliker V. Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem[J]. Journal of Mathematical Sciences, 117, 4096-4108(2003).

    [83] Oliker V. Mathematical aspects of design of beam shaping surfaces in geometrical optics[M]. Kirkilionis M, Krömker S, Rannacher R, et al. Trends in nonlinear analysis, 193-224(2003).

    [84] Oliker V. Freeform optical systems with prescribed irradiance properties in near-field[J]. Proceedings of SPIE, 6342, 634211(2006).

    [85] Michaelis D, Schreiber P, Bräuer A. Cartesian oval representation of freeform optics in illumination systems[J]. Optics Letters, 36, 918-920(2011).

    [86] Canavesi C, Cassarly W J, Rolland J P. Target flux estimation by calculating intersections between neighboring conic reflector patches[J]. Optics Letters, 38, 5012-5015(2013).

    [87] Andreeva K V, Kravchenko S V, Moiseev M A et al. Designing freeform TIR optical elements using supporting quadric method[J]. Optics Express, 25, 23465-23476(2017).

    [88] Kravchenko S V, Byzov E V, Moiseev M A et al. Development of multiple-surface optical elements for road lighting[J]. Optics Express, 25, A23-A35(2017).

    [89] Oliker V. Controlling light with freeform multifocal lens designed with supporting quadric method(SQM)[J]. Optics Express, 25, A58-A72(2017).

    [90] Fournier F R, Cassarly W J, Rolland J P. Fast freeform reflector generation usingsource-target maps[J]. Optics Express, 18, 5295-5304(2010).

    Fanqi Shen, Lin Yang, Rengmao Wu, Zhenrong Zheng, Haifeng Li, Xu Liu. Research Progress on Monge-Ampère Equation Method for Designing Freeform Beam-Shaping Optics[J]. Acta Optica Sinica, 2023, 43(8): 0822010
    Download Citation