• Journal of Inorganic Materials
  • Vol. 35, Issue 7, 748 (2020)
Lei CHEN1、2, Kai WANG1、2, Wentao SU1、2, Wen ZHANG1、2, Chenguang XU1、2, Yujin WANG1、2、*, and Yu ZHOU1、2
Author Affiliations
  • 1Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • 2Key Laboratory of Advanced Structure-functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.15541/jim20190408 Cite this Article
    Lei CHEN, Kai WANG, Wentao SU, Wen ZHANG, Chenguang XU, Yujin WANG, Yu ZHOU. Research Progress of Transition Metal Non-oxide High-entropy Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 748 Copy Citation Text show less
    References

    [1] G FAHRENHOLTZ W, E HILMAS G. Ultra-high temperature ceramics: materials for extreme environments. Scripta Materialia, 129, 94-99(2017).

    [2] R WEINBERGER C, B THOMPSON G. Review of phase stability in the group IVB and VB transition-metal carbides. Journal of the American Ceramic Society, 101, 4401-4424(2018).

    [3] Q GUO S. Densification of ZrB2-based composites and their mechanical and physical properties: a review. Journal of the European Ceramic Society, 29, 995-1011(2009).

    [4] K HUANG P, W YEH J, T SHUN T et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 6, 74-78(2004).

    [5] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [6] K CHEN T, T SHUN T, W YEH J et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 188-189, 193-200(2004).

    [7] B CANTOR. Multicomponent and high entropy alloys. Entropy, 16, 4749-4768(2014).

    [8] B CANTOR, H CHANG I T, P KNIGHT et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375-377, 213-218(2004).

    [9] W YEH J, J LIN S, S CHIN T et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 35, 2533-2536(2004).

    [10] H TSAI M, W YEH J. High-entropy alloys: a critical review. Materials Research Letters, 2, 107-123(2014).

    [11] B MIRACLE D, N SENKOV O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511(2017).

    [12] P WANG Y, S LI B, X REN M et al. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491, 154-158(2008).

    [13] N SENKOV O, B WILKS G, B MIRACLE D et al. Refractory high-entropy alloys. Intermetallics, 18, 1758-1765(2010).

    [14] N SENKOV O, M SCOTT J, V SENKOVA S et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509, 6043-6048(2011).

    [15] N SENKOV O, M SCOTT J, V SENKOVA S et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 47, 4062-4074(2012).

    [16] C GAO M, S CARNEY C, N DOĞAN Ö et al. Design of refractory high-entropy alloys. Journal of the Minerals Metals and Materials Society, 67, 2653-2669(2015).

    [17] Y LONG, X LIANG, K SU et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: microstructural evolution and mechanical properties. Journal of Alloys and Compounds, 780, 607-617(2019).

    [18] A TUNES M, M VISHNYAKOV V. Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin films. Materials & Design, 170, 107692(2019).

    [19] H KIM, S NAM, A ROH et al. Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. International Journal of Refractory Metals and Hard Materials, 80, 286-291(2019).

    [20] J HOU, M ZHANG, H YANG et al. Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing. Materials Letters, 238, 258-260(2019).

    [21] L HOU, J HUI, Y YAO et al. Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting. Vacuum, 164, 212-218(2019).

    [22] V BRAIC, A VLADESCU, M BALACEANU et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology, 211, 117-121(2012).

    [23] Z LEI, X LIU, Y WU et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 563, 546-550(2018).

    [24] O PIERSON H. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, William Andrew Publishing, Westwood, NJ(1996).

    [25] X YAN, L CONSTANTIN, Y LU et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 101, 4486-4491(2018).

    [26] Y YANG, W WANG, Y GAN G et al. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: ab initio investigation. Physica B: Condensed Matter, 550, 163-170(2018).

    [27] L FENG, G FAHRENHOLTZ W, E HILMAS G. Low-temperature sintering of single-phase, high-entropy carbide ceramics. Journal of the American Ceramic Society, 102, 7217-7224(2019).

    [28] B YE, T WEN, K HUANG et al. First‐principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic. Journal of the American Ceramic Society, 102, 4344-4352(2019).

    [29] P SARKER, T HARRINGTON, C TOHER et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 9, 4980(2018).

    [30] H CHEN, H XIANG, Z DAI F et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 35, 1700-1705(2019).

    [31] J HARRINGTON T, J GILD, P SARKER et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 166, 271-280(2019).

    [32] Y ZHOU J, Y ZHANG J, F ZHANG et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceramics International, 44, 22014-22018(2018).

    [33] E CHICARDI, C GARCíA-GARRIDO, J GOTOR F. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceramics International, 45, 21858-21863(2019).

    [34] K WANG, L CHEN, C XU et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 39, 99-105(2019).

    [35] D DEMIRSKYI, H BORODIANSKA, S SUZUKI T et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scripta Materialia, 164, 12-16(2019).

    [36] L YE B, H CHU Y, H HUANG K et al. Synthesis and characterization of (Zr1/3Nb1/3Ti1/3)C metal carbide solid-solution ceramic. Journal of the American Ceramic Society, 102, 919-923(2019).

    [37] E CASTLE, T CSANADI, S GRASSO et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep, 8, 8609(2018).

    [38] J DUSZA, P ŠVEC, V GIRMAN et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. Journal of the European Ceramic Society, 38, 4303-4307(2018).

    [39] B YE, T WEN, C NGUYEN M et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Materialia, 170, 15-23(2019).

    [40] L FENG, G FAHRENHOLTZ W, E HILMAS G et al. Synthesis of single-phase high-entropy carbide powders. Scripta Materialia, 162, 90-93(2019).

    [41] F LI, Y LU, G WANG X et al. Liquid precursor-derived high-entropy carbide nanopowders. Ceramics International, 45, 22437-22441(2019).

    [42] J GILD, K KAUFMANN, K VECCHIO et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics. Scripta Materialia, 170, 106-110(2019).

    [43] F WEI X, X LIU J, F LI et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 39, 2989-2994(2019).

    [44] C ZHANG. Compressive Creep Properties of (Ta-Hf-Zr-Nb)C HECs Prepared by Spark Plasma Sintering. Advanced Research Workshop on Engineering Ceramics, Slovakia(2019).

    [45] T CSANáDI, E CASTLE, J REECE M et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Scientific Reports, 9, 10200(2019).

    [46] V BRAIC, M BALACEANU, M BRAIC et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 10, 197-205(2012).

    [47] H JHI S, J IHM, G LOUIE S et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature, 399, 132-134(1999).

    [48] G SANGIOVANNI D, L HULTMAN, V CHIRITA. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Materialia, 59, 2121-2134(2011).

    [49] S GUO, C NG, J LU et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109, 103505(2011).

    [50] K BALASUBRAMANIAN, V KHARE S, D GALL. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Materialia, 152, 175-185(2018).

    [51] Y TAN, C CHEN, S LI et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor. Journal of Alloys and Compounds, 816, 152523(2019).

    [52] J GILD, Y ZHANG, T HARRINGTON et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 6, 37946(2016).

    [53] D LIU, T WEN, B YE et al. Synthesis of superfine high-entropy metal diboride powders. Scripta Materialia, 167, 110-114(2019).

    [54] Y ZHANG, B JIANG Z, K SUN S et al. Microstructure and mechanical properties of high-entropy borides derived from boro/ carbothermal reduction. Journal of the European Ceramic Society, 39, 3920-3924(2019).

    [55] Y ZHANG, M GUO W, B JIANG Z et al. Dense high-entropy boride ceramics with ultra-high hardness. Scripta Materialia, 164, 135-139(2019).

    [56] G TALLARITA, R LICHERI, S GARRONI et al. Novel processing route for the fabrication of bulk high-entropy metal diborides. Scripta Materialia, 158, 100-104(2019).

    [57] F GU J, J ZOU, K SUN S et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/ carbothermal reduction approach. Science China Materials, 62, 1898-1909(2019).

    [58] H CHEN, H XIANG, Z DAI F et al. Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating. Journal of Materials Science & Technology, 35, 2404-2408(2019).

    [59] T JIN, X SANG, R UNOCIC R et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30, 1707512(2018).

    [60] Y YANG, L MA, Y GAN G et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N. Journal of Alloys and Compounds, 788, 1076-1083(2019).

    [61] J GILD, J BRAUN, K KAUFMANN et al. A high-entropy silicide:(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 5, 337-343(2019).

    [62] Y QIN, X LIU J, F LI et al. A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 8, 148-152(2019).

    [63] H ZHANG, F AKHTAR. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite. Entropy, 21, 474(2019).

    [64] D POGREBNJAK A, A BAGDASARYAN A, M BERESNEV V et al. The effects of Cr and Si additions and deposition conditions on the structure and properties of the (Zr-Ti-Nb)N coatings. Ceramics International, 43, 771-782(2017).

    [65] D POGREBNJAK A, V YAKUSHCHENKO I, V BONDAR O et al. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings. Journal of Alloys and Compounds, 679, 155-163(2016).

    [66] H MAYRHOFER P, A KIRNBAUER, P ERTELTHALER et al. High-entropy ceramic thin films: a case study on transition metal diborides. Scripta Materialia, 149, 93-97(2018).

    [67] Y ZHONG, H SABAROU, X YAN et al. Exploration of high entropy ceramics (HECs) with computational thermodynamics - a case study with LaMnOδ. Materials & Design, 182, 108060(2019).

    Lei CHEN, Kai WANG, Wentao SU, Wen ZHANG, Chenguang XU, Yujin WANG, Yu ZHOU. Research Progress of Transition Metal Non-oxide High-entropy Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 748
    Download Citation