• Photonics Research
  • Vol. 10, Issue 2, 465 (2022)
Pan Wang1, Jiangyong He1, Xiaosheng Xiao2, Zhi Wang1、3、*, and Yange Liu1、4、*
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 2School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3e-mail: zhiwang@nankai.edu.cn
  • 4e-mail: ygliu@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.442615 Cite this Article Set citation alerts
    Pan Wang, Jiangyong He, Xiaosheng Xiao, Zhi Wang, Yange Liu. Sub-terahertz-repetition-rate frequency comb generated by filter-induced instabilities in passive driven fiber resonators[J]. Photonics Research, 2022, 10(2): 465 Copy Citation Text show less
    References

    [1] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599(2006).

    [2] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [3] E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz. Attosecond control and measurement: lightwave electronics. Science, 317, 769-775(2007).

    [4] B. Lomsadze, S. T. Cundiff. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science, 357, 1389-1391(2017).

    [5] N. Coluccelli, M. Cassinerio, B. Redding, H. Cao, P. Laporta, G. Galzerano. The optical frequency comb fibre spectrometer. Nat. Commun., 7, 12995(2016).

    [6] A. Hugi, G. Villares, S. Blaser, H. C. Liu, J. Faist. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229-233(2012).

    [7] K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, S. B. Papp. Electronic synthesis of light. Optica, 4, 406-411(2017).

    [8] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [9] F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, M. Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 4, 471-476(2010).

    [10] Z. Jiang, C. Huang, D. E. Leaird, A. M. Weiner. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photonics, 1, 463-467(2007).

    [11] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).

    [12] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [13] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).

    [14] C. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, R. L. Walsworth. A laser frequency comb that enables radial velocity measurements with a precision of 1  cm s-1. Nature, 452, 610-612(2008).

    [15] A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, K. Staliunas. Pattern generation by dissipative parametric instability. Phys. Rev. Lett., 116, 028701(2016).

    [16] N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, S. K. Turitsyn. Mode-locking via dissipative Faraday instability. Nat. Commun., 7, 12441(2016).

    [17] A. M. Perego. High-repetition-rate, multi-pulse all normal-dispersion fiber laser. Opt. Lett., 42, 3574-3577(2017).

    [18] P. Wang, S. Yao, P. Grelu, X. Xiao, C. Yang. Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability. Photon. Res., 7, 1287-1295(2019).

    [19] A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, S. Wabnitz. Self-induced Faraday instability laser. Phys. Rev. Lett., 120, 213902(2018).

    [20] A. M. Perego, S. K. Turitsyn, K. Staliunas. Gain through losses in nonlinear optics. Light Sci. Appl., 7, 43(2018).

    [21] F. Bessin, A. M. Perego, K. Staliunas, S. K. Turitsyn, A. Kudlinski, M. Conforti, A. Mussot. Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun., 10, 4489(2019).

    [22] A. M. Perego, A. Mussot, M. Conforti. Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A, 103, 013522(2021).

    [23] K. Tai, A. Hasegawa, A. Tomita. Observation of modulational instability in optical fibers. Phys. Rev. Lett., 56, 135-138(1986).

    [24] L. A. Lugiato, R. Lefever. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58, 2209-2211(1987).

    [25] K. Staliunas, C. Hang, V. V. Konotop. Parametric patterns in optical fiber ring nonlinear resonators. Phys. Rev. A, 88, 023846(2013).

    [26] F. Copie, M. Conforti, A. Kudlinski, A. Mussot, S. Trillo. Competing Turing and Faraday instabilities in longitudinally modulated passive resonators. Phys. Rev. Lett., 116, 143901(2016).

    [27] M. Conforti, A. Mussot, A. Kudlinski, S. Trillo. Modulational instability in dispersion oscillating fiber ring cavities. Opt. Lett., 39, 4200-4203(2014).

    [28] M. Conforti, F. Copie, A. Mussot, A. Kudlinski, S. Trillo. Parametric instabilities in modulated fiber ring cavities. Opt. Lett., 41, 5027-5030(2016).

    [29] M. Haelterman, S. Trillo, S. Wabnitz. Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett., 17, 745-747(1992).

    [30] M. Haelterman, S. Trillo, S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun., 91, 401-407(1992).

    [31] F. Matera, A. Mecozzi, M. Romagnoli, M. Settembre. Sideband instability induced by periodic power variation in long-distance fiber links. Opt. Lett., 18, 1499-1501(1993).

    [32] S. Coen, M. Haelterman. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys. Rev. Lett., 79, 4139-4142(1997).

    [33] A. Mussot, M. Conforti, S. Trillo, F. Copie, A. Kudlinski. Modulation instability in dispersion oscillating fibers. Adv. Opt. Photon., 10, 1-42(2018).

    [34] X. Dong, Q. Yang, C. Spiess, V. G. Bucklew, W. H. Renninger. Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett., 125, 033902(2020).

    [35] C. Spiess, Q. Yang, X. Dong, V. G. Bucklew, W. H. Renninger. Chirped dissipative solitons in driven optical resonators. Optica, 8, 861-869(2021).

    [36] C. Bao, C. Yang. Stretched cavity soliton in dispersion-managed Kerr resonators. Phys. Rev. A, 92, 023802(2015).

    [37] Y. Wang, S. Fu, C. Zhang, X. Tang, J. Kong, J. Lee, L. Zhao. Soliton distillation of pulses from a fiber laser. J. Lightwave Technol., 39, 2542-2546(2021).

    Pan Wang, Jiangyong He, Xiaosheng Xiao, Zhi Wang, Yange Liu. Sub-terahertz-repetition-rate frequency comb generated by filter-induced instabilities in passive driven fiber resonators[J]. Photonics Research, 2022, 10(2): 465
    Download Citation